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Syllabus
Semiconductor Diodes: Introduction, PN Junction diode, 
Characteristics and Parameters, Diode Approximations, DC Load Line 
Analysis

Diode Applications: Introduction, Half Wave Rectification, Full Wave 
Rectification, Full Wave Rectifier Power Supply: Capacitor Filter 
Circuit, RC-π Filter (includes numerical)

Zener Diodes: Junction Breakdown, Circuit Symbol and Package, 
Characteristics and Parameters, Equivalent Circuit, Zener Diode 
Voltage Regulator.

3



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Semiconductor Diodes
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PN Junction Diode
• A PN junction diode is a two terminal 

unidirectional device with a p-type 
anode and an n-type cathode.

• A PN junction provided with copper 
wire (conductor) connecting leads 
becomes an electronic device known 
as a diode.

• Diodes are used in a wide range of 
applications like rectification, voltage 
regulation, protection against high 
voltage and wave shaping.
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A semiconductor diode is a PN junction 
with conductors on each side of the 
junction for connecting the device to a 
circuit
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PN Junction Diode

Symbol of a diode
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PN Junction Diode
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Typical diode packages
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Diode Operation and 
Characteristics
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Unbiased PN Junction

9



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Unbiased PN Junction
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Unbiased PN Junction
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Unbiased PN Junction
• Since holes and electrons are close together at the junction, some free 

electrons from the n-side are attracted across the junction to fill adjacent 
holes on the p-side.
• They are said to diffuse across the junction from a region of high carrier 

concentration to one of low concentration.

• The free electrons crossing the junction create negative ions on the p-
side by giving some atoms one more electron than their total number of 
protons.

• The electrons also leave positive ions (atoms with one lesser electron 
than the number of protons) behind them on the n-side.
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Unbiased PN Junction
Depletion Region

• The movement of charge carriers across the junction leaves a layer on 
each side that is depleted of charge carriers.
• This region is called the depletion region.

• On the n-side, the depletion region is made up of donor impurity atoms 
that have become positively charged by losing the free electron 
associated with them.

• On the p-side, the depletion region is made up of acceptor impurity 
atoms that have become negatively charged by losing the hole 
associated with them.
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Unbiased PN Junction
Barrier Voltage

• The n-type and p-type materials are both electrically neutral before the 
diffusion of charge carriers across the junction.

• The diffusion of charge carriers creates positive and negative ions on n-
side and p-side, which results in an electric field near the junction.

• This creates a potential difference across the depletion region which acts 
as a barrier.
• This region is called the barrier voltage or barrier potential or junction 

potential, which is negative on the p-side and positive on the n-side.

• Typical barrier voltages at 25°C are 0.3 V for germanium and 0.7 V for 
silicon junctions.

14



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Forward Biasing of Diode
• A diode is said to be forward biased when the positive terminal of 

the battery is connected to the p-side and negative terminal to the 
n-side. 
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Forward Biasing of Diode
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A forward-biased diode showing the flow of majority carriers and the voltage due to the barrier 
potential across the depletion region.
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Forward Biasing of Diode
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Forward Biasing of Diode
• The holes on the p-side, being positively charged particles, are 

repelled from the positive terminal and driven toward the junction.

• Similarly, the electrons on the n-side are repelled from the negative 
terminal toward the junction.

• As a result, the width of the depletion region and the barrier 
voltage are both reduced.

• When the applied bias voltage is progressively increased from zero, 
the barrier voltage gets smaller until it effectively disappears and 
charge carriers easily flow across the junction.
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Forward Biasing of Diode
• Electrons from the n-side are now attracted to the positive bias 

terminal on the p-side, and holes from the p-side are attracted to 
the negative terminal on the n-side.

• The majority charge carrier current flows, and the junction is said to 
be forward biased.
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Forward Characteristic

Forward Characteristic (V-I characteristic of a forward biased diode)
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Forward Characteristic
• From the forward characteristic, it can be seen that there is a very 

little forward current until 𝑉𝐹 exceeds the junction barrier voltage 
(0.3 V for germanium and 0.7 V for silicon).

• When 𝑉𝐹 is increased from zero toward the knee of the 
characteristic, the barrier voltage is progressively overcome, 
allowing more majority charge carriers to flow across the junction.

• Above the knee of the characteristic, 𝐼𝐹 increases almost linearly 
with increase in 𝑉𝐹.
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Reverse Biasing of Diode
• A diode is said to be reverse biased when the positive terminal of 

the battery is connected to the n-side and negative terminal to the 
p-side. 
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Reverse Biasing of Diode

23

A reverse-biased diode
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Reverse Biasing of Diode
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A reverse-biased diode
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Reverse Biasing of Diode
• Electrons from the n-side are attracted to the positive terminal 

away from the junction, and holes on the p-side are attracted to the 
negative terminal away from the junction.

• This causes the depletion region to be widened and the barrier 
voltage to be increased.

• With the barrier voltage increase, there is no possibility of a 
majority charge carrier current flow across the junction, and the 
junction is said to be reverse biased.

• Although, there is very small reverse current and hence the reverse 
biased PN junction can be said to have a high resistance.
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Reverse Biasing of Diode
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The extremely small reverse current in a reverse-biased diode is due to the minority 
carriers from thermally generated electron-hole pairs.
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Reverse Biasing of Diode
• Although there is no possibility that a majority charge carrier current can 

flow across a reverse biased junction, minority carriers generated on 
each side can still cross the junction.

• Electrons in the p-side are attracted across the junction to the positive 
voltage on the n-side, and holes on the n-side may flow across to the 
negative voltage on the p-side.

• Since only a very small reverse bias voltage is necessary to direct all 
available minority carriers across the junction, further increase in bias 
voltage does not increase the current level.
• This current is known as reverse saturation current.
• The reverse saturation current is normally a very small quantity, ranging 

from nanoamperes (nA) to microamperes (μA).
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Reverse Biasing of Diode
• If the reverse bias voltage is increased to a value called the 

breakdown voltage, the diode breaks down and the reverse current 
will increase drastically.
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Reverse Characteristic

Reverse Characteristic (V-I characteristic of a reverse biased diode)
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Reverse Characteristic
• From the reverse characteristic, it can be seen that 𝐼𝑅 is largely a 

minority charge carrier reverse saturation current.

• A small increase in 𝐼𝑅 can occur with increasing reverse bias voltage, as 
a result of minority charge carriers leaking along the junction surface.

• Normally, the reverse current is very small and it can be neglected.

• However, if the reverse bias voltage is increased to a value called the 
breakdown voltage, the reverse current will drastically increase.
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Forward and Reverse Characteristic
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𝑉𝐹  (V)𝑉𝑅 (V)

𝐼𝐹 (mA)

𝐼𝑅 (μA or nA)

𝑉𝐵𝑅

Reverse Saturation 
Current
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Forward and Reverse Characteristic
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V-I characteristic of a silicon diode
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Forward and Reverse Characteristic
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V-I characteristic of a germanium diode
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Diode Parameters
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Diode Parameters
Knee Voltage 

• It is the small forward voltage applied to a forward biased diode at which 
current starts increasing exponentially.

• Also called threshold voltage (𝑉𝑇) or cut-in voltage.
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𝑉𝐹  (V)

𝐼𝐹 (mA)

0.3 V for Ge
0.7 V for Si



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Diode Parameters
Forward Voltage Drop (𝑉𝐹)

• It is the voltage drop across a forward biased diode.

36

0.3 V for Ge
0.7 V for Si
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Diode Parameters
Maximum Forward Current (𝑰𝑭(𝒎𝒂𝒙)) 

• It is the maximum current that a forward biased diode can conduct without 
burning out.
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Diode Parameters
Reverse Saturation Current (𝑰𝑹 𝒔𝒂𝒕  or 𝑰𝒔) 

• It is the small amount of constant reverse current flowing through the diode 
when it is reverse biased.
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𝑉𝑅 (V)

𝐼𝑅 (μA or nA)

𝑉𝐵𝑅

Reverse Saturation 
Current
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Diode Parameters
Reverse Breakdown Voltage (𝑽𝑩𝑹) 

• It is the value of reverse voltage at which the diode breaks down and the 
reverse current increases drastically.

• The diode gets damaged due to breakdown.

39

𝑉𝑅 (V)

𝐼𝑅 (μA or nA)

𝑉𝐵𝑅

Reverse Saturation 
Current
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Diode Parameters
Peak Inverse Voltage (PIV)

• It is the maximum value of reverse voltage that can be applied to the diode 
without causing breakdown.

• It is also called PIV rating of the diode.
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Diode Parameters
Maximum Power Rating (MPR)

• It is the maximum power that the diode can dissipate safely, without increasing 
the junction temperature above its limiting value.
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Static Resistance
• Static resistance is also called dc resistance.

Static Forward Resistance (𝑹𝑭)

• It is the resistance offered by the forward 
biased PN junction diode and calculated at a 
particular point on the forward 
characteristics.

Static Reverse Resistance (𝑹𝑹)

• It is the resistance offered by the reverse 
biased PN junction diode and calculated at a 
particular point on the reverse 
characteristics.
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Static Resistance – Numerical Example
Calculate the forward and reverse resistances offered by a silicon diode with the 
characteristics as shown in the figure at 𝐼𝐹 = 100 𝑚𝐴 and at 𝑉𝑅 = 50 𝑉.
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Static Resistance – Numerical Example
Solution:

From the characteristics, at 𝐼𝐹 = 100 𝑚𝐴, 𝑉𝐹 ≈ 0.75 𝑉

The forward resistance,
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𝑅𝐹 =
𝑉𝐹

𝐼𝐹

𝑅𝐹 =
0.75 𝑉

100 𝑚𝐴

𝑅𝐹 = 7.5 Ω
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Static Resistance – Numerical Example
From the characteristics, at 𝑉𝑅 = 50 𝑉, 𝐼𝑅 ≈ 100 𝑛𝐴

The reverse resistance,
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𝑅𝑅 =
𝑉𝑅

𝐼𝑅

𝑅𝑅 =
50 𝑉

100 𝑛𝐴

𝑅𝑅 = 500 𝑀Ω
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Dynamic Resistance
• The dynamic resistance of the diode 

is the resistance offered to the 
changing levels of forward voltage.

• It is indicated by 𝑟𝑑.

• It is the reciprocal of the slope of the 
forward characteristics beyond the 
knee.

• Dynamic resistance is also called 
incremental resistance or ac 
resistance.
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𝑟𝑑 =
Δ𝑉𝐹

Δ𝐼𝐹
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Dynamic Resistance
• The dynamic resistance can also be calculated from the rule-of-thumb 

equation

𝑟𝑑
′ =

26 𝑚𝑉

𝐼𝐹

• For example, the dynamic resistance for a diode passing a 1 𝑚𝐴 forward 
current is 

𝑟𝑑
′ =

26 𝑚𝑉

𝐼𝐹
=

26 𝑚𝑉

1 𝑚𝐴
= 26 Ω
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Dynamic Resistance – Numerical Example
Determine the dynamic resistance at a forward current of 70 𝑚𝐴 for the diode 
characteristics given in the figure. 
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Dynamic Resistance – Numerical Example
Solution:

From the characteristics, at 𝐼𝐹 = 70 𝑚𝐴,

Δ𝐼𝐹 = 60 𝑚𝐴 and Δ𝑉𝐹 ≈ 0.025 𝑉

The dynamic resistance,
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𝑟𝑑 =
Δ𝑉𝐹

Δ𝐼𝐹

𝑟𝑑 =
0.025 V

60 mA

𝑟𝑑 = 0.416 Ω
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Dynamic Resistance – Numerical Example
The dynamic resistance can also be calculated as,

50

𝑟𝑑
′ =

26 mV

70 mA

𝑟𝑑
′ = 0.371 Ω

𝑟𝑑
′ =

26 𝑚𝑉

𝐼𝐹
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Diode Approximations
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Equivalent Circuits of Diode
• An equivalent circuit for a device is a circuit that represents the device 

behaviour.

• A diode equivalent circuit may be substituted for the device when investigating 
a circuit containing the diode.
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Ideal Model
• An ideal diode (or perfect diode) would have zero forward resistance and zero 

forward voltage drop.

• It would also have an infinitely high reverse resistance, which would result in 
zero reverse current.

• The ideal model of a diode is the least accurate approximation and can be 
represented by a simple switch. 

• When the diode is forward biased, it ideally acts like a closed switch (ON).

• When the diode is reverse biased, it ideally acts like an open switch (OFF).

• The barrier voltage, the forward dynamic resistance and the reverse current 
are all neglected.
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Ideal Model

54

An ideal diode has 𝑉𝐹 = 0, 𝐼𝑅 = 0 and 𝑟𝑑 = 0 Ideal Model of a Diode
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Approximate Model (Practical Model)
• The approximate model or practical model of diode includes the barrier voltage.

• A forward biased diode is assumed to have a constant forward voltage drop (𝑉𝐹) 
and negligible resistance.

• In this case, the diode equivalent circuit is assumed to be a voltage cell with a 
voltage 𝑉𝐹 .

• In circuits with supply voltages much larger than the forward voltage drop, 𝑉𝐹 
can be assumed to be constant without introducing any serious errors.

• In approximate or practical model, the forward dynamic resistance and the 
reverse current are neglected.
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Approximate Model (Practical Model)

56

In practical diode, 𝑉𝐹  is considered, 𝐼𝑅 = 0 and 𝑟𝑑 = 0 

Approximate Model of Diode 

(Basic dc equivalent circuit)

Approximate Characteristics



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Approximate Model (Practical Model)

57

Approximate characteristics of Germanium diode Approximate characteristics of Silicon diode
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Piecewise Linear Model (Complete Model)
• The complete model of a diode is the most accurate approximation and 

includes the barrier voltage (forward voltage drop 𝑉𝐹  and the small forward 
dynamic resistance (𝑟𝑑).

• The complete dc equivalent circuit includes the diode dynamic resistance (𝑟𝑑) 
in series with the voltage cell with a voltage 𝑉𝐹.

• This takes account of the small variations in 𝑉𝐹 that occur with change in 
forward current.

• The piecewise linear characteristic is the straight-line approximation of the 
forward characteristic and can be employed when the forward characteristic of 
a diode is not available.

58



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Piecewise Linear Model (Complete Model)

59

In piecewise linear model, 𝑉𝐹  and 𝑟𝑑 are considered

Complete Model of Diode 

(Complete dc equivalent circuit)

Piecewise Linear CharacteristicsNote: An ideal diode is also included to 
show that current flows only in one 
direction.
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Piecewise Linear Model (Complete Model)
• To construct the piecewise linear 

characteristic, the forward voltage 
drop 𝑉𝐹 is first marked on the 
horizontal axis.

• Then, from 𝑉𝐹, a straight line is drawn 
with a slope equal to the reciprocal of 
diode dynamic resistance. 
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Piecewise Linear Characteristic – 
Numerical Example

Construct the piecewise linear characteristic for a silicon diode which has a 
0.25 Ω dynamic resistance and a 200 𝑚𝐴 maximum forward current.

Solution:

Given 𝑟𝑑 = 0.25 Ω and 𝐼𝐹(𝑚𝑎𝑥) = 200 𝑚𝐴

Also given that it is a silicon diode. Hence 𝑉𝐹 = 0.7 𝑉
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Piecewise Linear Characteristic – 
Numerical Example

Plot point A on the horizontal axis at 𝑉𝐹 = 0.7 𝑉

We know that, 𝑟𝑑 =
Δ𝑉𝐹

Δ𝐼𝐹

Hence Δ𝑉𝐹 = Δ𝐼𝐹 × 𝑟𝑑

                     = 200 𝑚𝐴 × 0.25 Ω

                     = 0.05 𝑉

Plot point B at

𝐼𝐹 = 200 𝑚𝐴 and

 𝑉𝐹 = (𝑉𝐹+Δ𝑉𝐹) = 0.7 + 0.05  𝑉 = 0.75 𝑉

Join points A and B.
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Diode Circuits – Numerical Example 1
A silicon diode is used in the circuit shown in the figure. Calculate the diode 
current.

Solution:

Given that it is a silicon diode. Hence 𝑉𝐹 = 0.7 𝑉 

Using KVL, 𝐸 = 𝐼𝐹𝑅1 + 𝑉𝐹

Or 𝐼𝐹 =
𝐸−𝑉𝐹

𝑅1
 

           =
15 𝑉−0.7 𝑉

4.7 𝑘Ω

 = 3.04 𝑚𝐴 
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Diode Circuits – Numerical Example 2
Calculate 𝐼𝐹  for the diode circuit in the figure assuming that the diode has 𝑉𝐹 =
0.7𝑉 and 𝑟𝑑 = 0. Then recalculate the current taking 𝑟𝑑 = 0.25 Ω.

Solution:

Given 𝑉𝐹 = 0.7 𝑉 and 𝑟𝑑 = 0

Using diode equivalent circuit,
 𝐸 = 𝐼𝐹𝑅1 + 𝑉𝐹

Or 𝐼𝐹 =
𝐸−𝑉𝐹

𝑅1
 =

1.5 𝑉−0.7 𝑉

10 Ω

 = 80 𝑚𝐴 

64



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Diode Circuits – Numerical Example 2
Now consider 𝑟𝑑 = 0.25 Ω,

 Using diode equivalent circuit,
 𝐸 = 𝐼𝐹𝑅1 + 𝐼𝐹𝑟𝑑 + 𝑉𝐹

 𝐸 = 𝐼𝐹(𝑅1+𝑟𝑑) + 𝑉𝐹

Or 𝐼𝐹 =
𝐸−𝑉𝐹

𝑅1+𝑟𝑑
 =

1.5 𝑉−0.7 𝑉

10 Ω+0.25Ω

 = 78 𝑚𝐴 
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Diode Circuits – Numerical Example 3
Find the value of the series resistance R required to drive a forward current of 
1.25 𝑚𝐴 through a Germanium diode from a 4.5 𝑉 battery. Write the circuit 
diagram showing all the values.

Solution:

Given 𝐼𝐹 = 1.25 𝑚𝐴, 𝐸 = 4.5 𝑉

Also that it is a germanium diode. Hence 𝑉𝐹 = 0.3 𝑉 

Using KVL, 𝐸 = 𝐼𝐹𝑅 + 𝑉𝐹

Or               𝑅 =
𝐸−𝑉𝐹

𝐼𝐹
 =

4.5 𝑉−0.3 𝑉

1.25 𝑚𝐴

 = 3.36 𝑘Ω
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DC Load Line Analysis

67
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DC Load Line
• A dc load line is a straight line that illustrates all dc 

conditions that could exist within the circuit.

• It is drawn on the diode forward characteristics.

• Consider a circuit shown in the figure.

• Using KVL, we can write

𝐸 = 𝐼𝐹𝑅1 + 𝑉𝐹

• DC load line can be drawn by obtaining points A and B.

68
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DC Load Line
• At point A, 𝐼𝐹 = 0. Using this in Eqn. (1), we get 

𝑉𝐹 = E

• At point B, 𝑉𝐹 = 0. Using this in Eqn. (1), we get 

𝐼𝐹 =
𝐸

𝑅1

• After obtaining points A and B, mark them and 
join using a straight line.
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DC Load Line

70
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Q-Point
• The quiescent point or Q-Point is the only point on the dc load line where the 

diode voltage and current are compatible with the circuit conditions.

• It is also called dc bias point.

• It is the point where the dc load line intersects the diode forward 
characteristic.
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Rectification

72



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Rectification
• Rectification is the process of converting alternating current (ac) to direct 

current (dc).

• Since semiconductor diodes conduct current in the forward direction and block 
current in the other direction, they can be used for rectification.

• A rectifier is a circuit which converts alternating current (ac) into direct current 
(dc).

• Rectifiers are found in all dc power supplies that operate from an ac voltage 
source.

• A power supply is an essential part of each electronic system from the simplest to 
the most complex.

73



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Rectification

AC Rectifier DC
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Why do we need Rectification?
• The source available to us is 230 V, 50 Hz ac power supply.

• However, most of the electronic circuits such as amplifiers, 
oscillators, etc. require a dc voltage in the range of 5 V to 25 V for 
their proper operation.

• Hence, it is essential to convert ac to dc.
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Types of Rectifiers
• Half-Wave Rectifier

• Full-Wave Rectifier

• Full-Wave Rectifier using two diodes and a centre-tapped transformer

• Full-Wave Bridge Rectifier using four diodes
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Half-Wave Rectifier
• A Half-Wave Rectifier (HWR) is a circuit which converts only one 

half-cycle of the input ac to pulsating dc. 
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Half-Wave Rectifier
Circuit Diagram
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Half-Wave Rectifier
• The half-wave rectifier consists of a single diode as shown.

• A step-down transformer is used to reduce the available ac voltage 
to the required level.

• Resistor 𝑅𝐿 is the load resistance which consumes power from the 
rectifier.
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Half-Wave Rectifier
Operation

• Consider the single phase ac input signal given by

𝑣1 = 𝑉𝑚 sin 𝜔𝑡 (1)

• We have transformer turns ratio

𝑁1

𝑁2
=

𝑣1

𝑣2

• Rearranging, we can write transformer secondary voltage as

𝑣2 =
𝑁2

𝑁1
𝑉𝑚 sin 𝜔𝑡 (2)
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Half-Wave Rectifier
• For simplicity, consider 𝑁1 = 𝑁2.

• Then, Eqn. (2) can be written as 

𝑣2 = 𝑉𝑚 sin 𝜔𝑡 (3)

81



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Half-Wave Rectifier
(i) During positive half-cycle of ac supply (𝟎 ≤ 𝛚𝐭 ≤ 𝛑)

• The diode 𝐷1 is forward biased and hence it conducts.

• The conducting diode can be replaced by its forward resistance 𝑅𝑓 and the 

equivalent circuit can be drawn as shown.
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Half-Wave Rectifier
• From the circuit,

𝑖𝑜 =
𝑣2

𝑅𝑓 + 𝑅𝐿

• Using 𝑣2 = 𝑉𝑚 sin 𝜔𝑡 , (from Eqn. (3))

𝑖𝑜 =
𝑉𝑚 sin 𝜔𝑡

𝑅𝑓 + 𝑅𝐿

• We can write

𝑖𝑜 = 𝐼𝑚 sin 𝜔𝑡  (4)

where 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿
 is the peak value of load current.

• The output voltage is then 𝑣𝑜 = 𝑖𝑜𝑅𝐿
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Half-Wave Rectifier
(ii) During negative half-cycle of ac supply (𝛑 ≤ 𝛚𝐭 ≤ 𝟐𝛑)

• The diode 𝐷1 is reverse biased and hence it does not conduct.

• The non-conducting diode can be replaced by an open circuit as shown.

• The current 𝑖𝑜 is zero and as a result, 𝑣𝑜 = 0.

84
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Half-Wave Rectifier
• Using Eqns. (4) and (5), we can write

𝑖0 = ቊ
𝐼𝑚 sin 𝜔𝑡 ;  0 ≤ 𝜔𝑡 ≤ 𝜋

 0 ; 𝜋 ≤ 𝜔𝑡 ≤ 2𝜋
  (6)

where 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿
 is the peak value of load current.

Note: If the diode is ideal, then 𝑅𝑓 = 0. Then 𝐼𝑚 =
𝑉𝑚

𝑅𝐿
 (for an ideal diode).

85



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Half-Wave Rectifier
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Average or DC Load Current (𝐼𝑑𝑐)

𝐼𝑑𝑐 =
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑜𝑛𝑒 𝑐𝑦𝑐𝑙𝑒 𝑜𝑓 𝑖𝑜

𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑖𝑜

=
0

2𝜋
𝑖𝑜 𝑑𝜔𝑡

2𝜋
 

 =
1

2𝜋
න

0

𝜋

𝐼𝑚 sin 𝜔𝑡 𝑑𝜔𝑡 + න
𝜋

2𝜋

0 𝑑𝜔𝑡  

=
𝐼𝑚

2𝜋
− cos 𝜔𝑡 0

𝜋 
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Average or DC Load Current (𝐼𝑑𝑐)

𝐼𝑑𝑐 =
𝐼𝑚

2𝜋
− cos 𝜋 − (− cos 0)  

=
𝐼𝑚

2𝜋
−(−1) − (−1)  

=
𝐼𝑚

2𝜋
2  

𝐼𝑑𝑐 =
𝐼𝑚

𝜋
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Average or DC Output Voltage (𝑉𝑑𝑐)
𝑉𝑑𝑐 = 𝐼𝑑𝑐𝑅𝐿

 =
𝐼𝑚

𝜋
𝑅𝐿

 =
1

𝜋

𝑉𝑚

𝑅𝑓 + 𝑅𝐿
𝑅𝐿

 𝑉𝑑𝑐 =
𝑉𝑚

𝜋

𝑅𝐿

𝑅𝑓 + 𝑅𝐿
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∵ 𝐼𝑚 =
𝑉𝑚

𝑅𝑓 + 𝑅𝐿
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Average or DC Output Voltage (𝑉𝑑𝑐)
Dividing numerator and denominator by 𝑅𝐿,

𝑉𝑑𝑐 =
(𝑉𝑚/𝜋)

1 + (𝑅𝑓/𝑅𝐿)

Note: If the diode is ideal, then 𝑅𝑓 = 0. Then 𝑉𝑑𝑐 =
𝑉𝑚

𝜋
 (for an ideal diode).
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RMS or AC Load Current (𝐼𝑟𝑚𝑠)
RMS = Root Mean Square

𝐼𝑟𝑚𝑠 =
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑜𝑛𝑒 𝑐𝑦𝑐𝑙𝑒 𝑜𝑓 𝑖𝑜

2

𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑖𝑜
2

=
0

2𝜋
𝑖𝑜

2 𝑑𝜔𝑡

2𝜋
 

 =
1

2𝜋
න

0

𝜋

𝐼𝑚
2 sin2 𝜔𝑡 𝑑𝜔𝑡 + න

𝜋

2𝜋

0 𝑑𝜔𝑡
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RMS or AC Load Current (𝐼𝑟𝑚𝑠)

= 𝐼𝑚

1

2𝜋
න

0

𝜋

sin2 𝜔𝑡 𝑑𝜔𝑡 

= 𝐼𝑚

1

2𝜋
න

0

𝜋 1 − cos 2𝜔𝑡

2
𝑑𝜔𝑡

 = 𝐼𝑚

1

4𝜋
න

0

𝜋

1 𝑑𝜔𝑡 − න
0

𝜋

cos 2𝜔𝑡 𝑑𝜔𝑡
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∵ sin2 𝜔𝑡 =
1 − cos 2𝜔𝑡

2
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RMS or AC Load Current (𝐼𝑟𝑚𝑠)

=
𝐼𝑚

2

1

𝜋
[𝜔𝑡]0

𝜋 −
sin 2𝜔𝑡

2
0

𝜋

 

 =
𝐼𝑚

2

1

𝜋
𝜋 − 0 −

1

2
sin 2𝜋 − sin 0  

=
𝐼𝑚

2

1

𝜋
𝜋  
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RMS or AC Load Current (𝐼𝑟𝑚𝑠)

𝐼𝑟𝑚𝑠  =
𝐼𝑚

2
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RMS or AC Output Voltage (𝑉𝑟𝑚𝑠)
𝑉𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅𝐿

 =
𝐼𝑚

2
𝑅𝐿

 =
1

2

𝑉𝑚

𝑅𝑓 + 𝑅𝐿
𝑅𝐿

 𝑉𝑟𝑚𝑠 =
𝑉𝑚

2

𝑅𝐿

𝑅𝑓 + 𝑅𝐿
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∵ 𝐼𝑚 =
𝑉𝑚

𝑅𝑓 + 𝑅𝐿
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RMS or AC Output Voltage (𝑉𝑟𝑚𝑠)
Dividing numerator and denominator by 𝑅𝐿,

𝑉𝑟𝑚𝑠 =
(𝑉𝑚/2)

1 + (𝑅𝑓/𝑅𝐿)

Note: If the diode is ideal, then 𝑅𝑓 = 0. Then 𝑉𝑟𝑚𝑠 =
𝑉𝑚

2
 (for an ideal diode).
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Rectification Efficiency (𝜂𝑟)
• Rectification efficiency is defined as the ratio of the dc output 

power to the ac input power supplied to the rectifier.

• It is given by,

𝜂𝑟 =
𝑃𝑑𝑐

𝑃𝑖

where 𝑃𝑑𝑐  is the dc output power of the rectifier

and 𝑃𝑖 is the ac input power to the rectifier. 
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Rectification Efficiency (𝜂𝑟)
• The dc output power is given by

𝑃𝑑𝑐 = 𝐼𝑑𝑐
2 𝑅𝐿

 =
𝐼𝑚

𝜋

2

𝑅𝐿

𝑃𝑑𝑐 =
𝐼𝑚

2 𝑅𝐿

𝜋2
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(2)

∵ 𝐼𝑑𝑐 =
𝐼𝑚

𝜋
 for a HWR
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Rectification Efficiency (𝜂𝑟)
• The ac input power is given by

𝑃𝑖 = 𝐼𝑟𝑚𝑠
2 [𝑅𝑓 + 𝑅𝐿] 

 =
𝐼𝑚

2

2

[𝑅𝑓 + 𝑅𝐿]

𝑃𝑖 =
𝐼𝑚

2

4
[𝑅𝑓 + 𝑅𝐿] 
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(3)

∵ 𝐼𝑟𝑚𝑠 =
𝐼𝑚

2
 for a HWR
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Rectification Efficiency (𝜂𝑟)
• Using Eqns. (2) and (3) in (1),

𝜂𝑟 =

𝐼𝑚
2 𝑅𝐿

𝜋2

𝐼𝑚
2

4 [𝑅𝑓 + 𝑅𝐿]

 =
4

𝜋2

𝑅𝐿

𝑅𝑓 + 𝑅𝐿

𝜂𝑟 =
0.405𝑅𝐿

𝑅𝑓 + 𝑅𝐿
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Rectification Efficiency (𝜂𝑟)

𝜂𝑟 =
0.405

1 + (𝑅𝑓/𝑅𝐿)
 

 %𝜂𝑟 =
0.405

1 + (𝑅𝑓/𝑅𝐿)
× 100%

 %𝜂𝑟 =
40.5

1 + (𝑅𝑓/𝑅𝐿)
% 

Note: Maximum efficiency can be achieved for an ideal diode (𝑅𝑓= 0)

%𝜂𝑟(𝑚𝑎𝑥) = 40.5%
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Rectification Efficiency (𝜂𝑟)
Note: We have %𝜂𝑟(𝑚𝑎𝑥) = 40.5%.

That means, 

𝜂𝑟(𝑚𝑎𝑥) =
𝑃𝑑𝑐

𝑃𝑖
= 0.405

𝑃𝑑𝑐 = 0.405𝑃𝑖

• The dc output power is only 40.5% of the ac input power.

• The remaining 59.5% of the ac input power goes unused.

• Hence, half-wave rectifier has a very poor rectification efficiency.
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Ripple Factor (𝛾)
• Ripple factor is the ratio of rms value of ac component present in 

the rectified output to the dc component of the rectified output.

• It is given by,

𝛾 =
𝑉𝑎𝑐

𝑉𝑑𝑐

where 𝑉𝑎𝑐 is the rms value of ac component present in the rectified 
output 

and 𝑉𝑑𝑐 is the dc component of the rectified output. 
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Ripple Factor (𝛾)
• The total power output is the sum of powers of dc and ac 

components.

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑑𝑐 + 𝑃𝑎𝑐

 
𝑉𝑟𝑚𝑠

2

𝑅𝐿
=

𝑉𝑑𝑐
2

𝑅𝐿
+

𝑉𝑎𝑐
2

𝑅𝐿

𝑉𝑟𝑚𝑠
2 = 𝑉𝑑𝑐

2 + 𝑉𝑎𝑐
2
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Ripple Factor (𝛾)
Dividing throughout by 𝑉𝑑𝑐

2 , we get

𝑉𝑟𝑚𝑠
2

𝑉𝑑𝑐
2 =

𝑉𝑑𝑐
2

𝑉𝑑𝑐
2 +

𝑉𝑎𝑐
2

𝑉𝑑𝑐
2

𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

= 1 +
𝑉𝑎𝑐

𝑉𝑑𝑐

2

𝑉𝑎𝑐

𝑉𝑑𝑐

2

=
𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

− 1
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Ripple Factor (𝛾)

𝑉𝑎𝑐

𝑉𝑑𝑐
=

𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

− 1 

Using Eqn. (1),

 𝛾 =
𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

− 1 
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Ripple Factor (𝛾)

In a half-wave rectifier, 𝑉𝑟𝑚𝑠 =
(𝑉𝑚/2)

1+(𝑅𝑓/𝑅𝐿)
 and 𝑉𝑑𝑐 =

(𝑉𝑚/𝜋)

1+(𝑅𝑓/𝑅𝐿)

𝛾 =

(𝑉𝑚/2)
1 + (𝑅𝑓/𝑅𝐿)

(𝑉𝑚/𝜋)
1 + (𝑅𝑓/𝑅𝐿)

2

− 1 

𝛾 =
𝜋

2
 

2

− 1 
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Ripple Factor (𝛾)

𝛾 =
𝜋2

4
− 1 

𝛾 = 1.21 
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Ripple Factor (𝛾)
Note: We have 𝛾 = 1.21.

That means, 

𝛾 =
𝑉𝑎𝑐

𝑉𝑑𝑐
= 1.21 

 𝑉𝑎𝑐 = 1.21𝑉𝑑𝑐

• The ac or ripple component is 121% of the dc component, i.e., ac 
component is greater than dc component.

• Hence, half-wave rectifier is not recommended for practical 
applications.
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Peak Inverse Voltage (PIV)
• Peak Inverse Voltage (PIV) is the maximum reverse voltage to which 

the diode can be subjected. 

• If the applied reverse voltage across the diode is greater than its PIV 
rating, the reverse breakdown of the diode which causes a 
permanent damage to the diode.
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Peak Inverse Voltage (PIV)
• Consider the equivalent circuit of a half-wave rectifier when the 

diode is not conducting.

111

• From the circuit, since 𝑖𝑜 = 0,

𝑣𝑟 = 𝑣2 

𝑣𝑟 = 𝑉𝑚 sin 𝜔𝑡

• Now, 

𝑃𝐼𝑉 = 𝑣𝑟(𝑚𝑎𝑥)

𝑃𝐼𝑉 = 𝑉𝑚 𝑣𝑟 is the instantaneous reverse voltage 
across the diode.
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Half-Wave Rectifier – Numerical Example 1
In a half wave rectifier, the input is from 30 V transformer. The load and diode 
forward resistances are 100 Ω and 10 Ω respectively. Calculate the 𝐼𝑑𝑐, 𝐼𝑟𝑚𝑠, 𝑃𝑑𝑐, 
𝑃𝑖, 𝜂, PIV and ripple factor.

Solution:

Given 𝑉2 = 30 𝑉, 𝑅𝐿 = 100 Ω, 𝑅𝑓 = 10 Ω

The given 𝑉2 is the rms value of the input and we know that 𝑉𝑟𝑚𝑠 =
𝑉𝑚

2

Hence, 𝑉𝑚 = 2𝑉2

                    = 2 × 30 𝑉

              𝑉𝑚 = 42.426 𝑉

112



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Half-Wave Rectifier – Numerical Example 1

Then, 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿

                 =
42.426 𝑉

10 Ω+100 Ω
 

           𝐼𝑚 = 385.69 𝑚𝐴

DC Load Current

          𝐼𝑑𝑐 =
𝐼𝑚

π

                 =
385.69 𝑚𝐴 

𝜋

          𝐼𝑑𝑐 = 122.77 𝑚𝐴

113

RMS Load Current

        𝐼𝑟𝑚𝑠 =
𝐼𝑚

2

                 =
385.69 𝑚𝐴 

2

        𝐼𝑟𝑚𝑠 = 192.845 𝑚𝐴

DC Output Voltage

 𝑉𝑑𝑐 = 𝐼𝑑𝑐𝑅𝐿

          = 122.77 𝑚𝐴 × 100 Ω

 𝑉𝑑𝑐 = 12.277 𝑉

RMS Output Voltage

 𝑉𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅𝐿

           = 192.845 𝑚𝐴 × 100 Ω

 𝑉𝑟𝑚𝑠 = 19.2845 𝑉
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Half-Wave Rectifier – Numerical Example 1
AC Input Power

          𝑃𝑖 = 𝐼𝑟𝑚𝑠
2 [𝑅𝑓 + 𝑅𝐿]

               = (192.845𝑚) 2× (10 + 100)

          𝑃𝑖 = 4.091 𝑊 

DC Output Power

          𝑃𝑑𝑐 = 𝐼𝑑𝑐
2 𝑅𝐿

                 = (122.77𝑚) 2× 100          

          𝑃𝑑𝑐 = 1.507 𝑊 

114

Rectification Efficiency

 %𝜂𝑟 =
𝑃𝑑𝑐

𝑃𝑖
× 100 %

          =
1.507

4.091
× 100 %

 %𝜂𝑟 = 36.84 %
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Half-Wave Rectifier – Numerical Example 1
Ripple Factor

 𝛾 =
𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

− 1 

     =
19.2845

12.277

2
− 1 

 𝛾 = 1.21

115

Peak Inverse Voltage

𝑃𝐼𝑉 = 𝑉𝑚

                    𝑃𝐼𝑉 = 42.426 𝑉
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Half-Wave Rectifier – Numerical Example 2
The input to a half wave rectifier is given through a 10:1 transformer from a 
supply given by 230 sin 314𝑡 𝑉. If 𝑅𝑓 = 50 𝛺 and 𝑅𝐿 = 500 𝛺, determine DC 

load voltage, RMS load voltage, rectification efficiency, DC power delivered to the 
load.

Solution:

Given 𝑣1 = 230 sin 314𝑡 𝑉

𝑁1: 𝑁2 = 10: 1 

𝑅𝑓 = 50 Ω 

𝑅𝐿 = 500 Ω 
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Half-Wave Rectifier – Numerical Example 2

We know that, 
𝑣1

𝑣2
=

𝑁1

𝑁2

Therefore,        𝑣2 =
𝑁2

𝑁1
𝑣1

                                 =
1

10
× 230 sin 314𝑡 𝑉

                           𝑣2 = 23 sin 314𝑡 𝑉

Comparing this with 𝑉𝑚 sin 𝜔𝑡,

We have 𝑉𝑚 = 23 𝑉 and 𝜔 = 314 𝑟𝑎𝑑/𝑠

117

𝜔 = 2𝜋𝑓

 𝑓 =
𝜔

2𝜋

 𝑓 =
314

2𝜋

 𝑓 = 49.97 𝐻𝑧 ≅ 50 𝐻𝑧
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Half-Wave Rectifier – Numerical Example 2

Then, 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿

                 =
23 𝑉

50 Ω+500 Ω
 

           𝐼𝑚 = 41.818 𝑚𝐴

DC Load Current

          𝐼𝑑𝑐 =
𝐼𝑚

π

                 =
41.818 𝑚𝐴 

𝜋

          𝐼𝑑𝑐 = 13.31 𝑚𝐴
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RMS Load Current

        𝐼𝑟𝑚𝑠 =
𝐼𝑚

2

                 =
41.818 𝑚𝐴 

2

        𝐼𝑟𝑚𝑠 = 20.909 𝑚𝐴

DC Load Voltage

 𝑉𝑑𝑐 = 𝐼𝑑𝑐𝑅𝐿

          = 13.31 𝑚𝐴 × 500 Ω

 𝑉𝑑𝑐 = 6.655 𝑉

RMS Load Voltage

 𝑉𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅𝐿

           = 20.909 𝑚𝐴 × 500 Ω

 𝑉𝑟𝑚𝑠 = 10.45 𝑉
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Half-Wave Rectifier – Numerical Example 2
AC Input Power

          𝑃𝑖 = 𝐼𝑟𝑚𝑠
2 [𝑅𝑓 + 𝑅𝐿]

               = (20.909𝑚) 2× (50 + 500)

          𝑃𝑖 = 240.452 𝑚𝑊 

DC Power delivered to the load

          𝑃𝑑𝑐 = 𝐼𝑑𝑐
2 𝑅𝐿

                 = (13.31𝑚) 2× 500          

          𝑃𝑑𝑐 = 88.578 𝑚𝑊 
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Rectification Efficiency

 %𝜂𝑟 =
𝑃𝑑𝑐

𝑃𝑖
× 100 %

          =
88.578 𝑚𝑊

240.452 𝑚𝑊
× 100 %

 %𝜂𝑟 = 36.84 %
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Half-Wave Rectifier – Numerical Example 3
A half wave rectifier is fed from a supply 230 V, 50 Hz with a step-down 
transformer of ratio 3:1. Resistive load connected is 10 kΩ. The diode forward 
resistance is 75 Ω and transformer secondary is 10 Ω. Calculate the DC load 
current, DC load voltage, efficiency and ripple factor. 

Solution:

Given 𝑉1 = 230 𝑉, 𝑓 = 50 𝐻𝑧, 𝑁1: 𝑁2 = 3: 1

 𝑅𝐿 = 10 kΩ = 10000 Ω

 𝑅𝑓 = 75 Ω

 𝑅𝑠 = 10 Ω
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Half-Wave Rectifier – Numerical Example 3
We know that, 

𝑉1

𝑉2
=

𝑁1

𝑁2

Therefore,        𝑉2 =
𝑁2

𝑁1
𝑉1

                                 =
1

3
× 230 𝑉

                           𝑉2 = 76.67 𝑉

This value of 𝑉2 is the rms value and the peak value can be found using

             𝑉𝑚 = 2𝑉2

                   = 2 × 76.67 𝑉

             𝑉𝑚 =  108.42 𝑉
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Half-Wave Rectifier – Numerical Example 3
Here, the resistance of the transformer secondary 𝑅𝑠 is given. So it should be 
considered in series with 𝑅𝑓 and 𝑅𝐿.

122

𝑅𝑠

From the circuit,

𝑖𝑜 =
𝑣2

𝑅𝑠 + 𝑅𝑓 + 𝑅𝐿

𝑖𝑜 =
𝑉𝑚 sin 𝜔𝑡

𝑅𝑠 + 𝑅𝑓 + 𝑅𝐿

We can write
𝑖𝑜 = 𝐼𝑚 sin 𝜔𝑡

where 𝐼𝑚 =
𝑉𝑚

𝑅𝑠+𝑅𝑓+𝑅𝐿
 is the peak value of load current.
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Half-Wave Rectifier – Numerical Example 3

So, 𝐼𝑚 =
𝑉𝑚

𝑅𝑠+𝑅𝑓+𝑅𝐿

            =
108.42 𝑉

10 Ω+75 Ω+10 𝑘Ω
 

      𝐼𝑚 = 10.75 𝑚𝐴

DC Load Current

          𝐼𝑑𝑐 =
𝐼𝑚

π

                 =
10.75 𝑚𝐴 

𝜋

          𝐼𝑑𝑐 = 3.422 𝑚𝐴
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RMS Load Current

        𝐼𝑟𝑚𝑠 =
𝐼𝑚

2

                 =
10.75 𝑚𝐴 

2

        𝐼𝑟𝑚𝑠 = 5.375 𝑚𝐴

DC Load Voltage

 𝑉𝑑𝑐 = 𝐼𝑑𝑐𝑅𝐿

          = 3.422 𝑚𝐴 × 10 kΩ

 𝑉𝑑𝑐 = 34.22 𝑉

RMS Load Voltage

 𝑉𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅𝐿

           = 5.375 𝑚𝐴 × 10 kΩ

 𝑉𝑟𝑚𝑠 = 53.75 𝑉
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Half-Wave Rectifier – Numerical Example 3
AC Input Power

          𝑃𝑖 = 𝐼𝑟𝑚𝑠
2 [𝑅𝑠 + 𝑅𝑓 + 𝑅𝐿]

               = (5.375𝑚) 2× (10 + 75 + 10k)

          𝑃𝑖 = 291.36 𝑚𝑊 

DC Output Power

          𝑃𝑑𝑐 = 𝐼𝑑𝑐
2 𝑅𝐿

                 = (3.422𝑚) 2× 10𝑘          

          𝑃𝑑𝑐 = 117.1 𝑚𝑊 
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Rectification Efficiency

 %𝜂𝑟 =
𝑃𝑑𝑐

𝑃𝑖
× 100 %

          =
117.1 𝑚𝑊

291.36 𝑚𝑊
× 100 %

 %𝜂𝑟 = 40.19 %
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Half-Wave Rectifier – Numerical Example 3
Ripple Factor

 𝛾 =
𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

− 1 

     =
53.75

34.22

2
− 1 

 𝛾 = 1.21
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Full-Wave Rectifier
• A Full-Wave Rectifier (FWR) is a circuit which converts both the half-

cycles of the input ac to pulsating dc.

• A full-wave rectifier can be constructed using two ways:

• Using two diodes and a centre-tapped transformer

• Using four diodes (Bridge Rectifier)
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Full-Wave Rectifier
Circuit Diagram

127

Centre-tapped
Transformer
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Full-Wave Rectifier
• The full-wave rectifier consists of two diodes 𝐷1 and 𝐷2 as shown.

• A step-down transformer is used to reduce the available ac voltage 
to the required level.

• The transformer is centre-tapped so that two equal voltages are 
induced at both halves of the transformer secondary.

• Resistor 𝑅𝐿 is the load resistance which consumes power from the 
rectifier.
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Full-Wave Rectifier
Operation

• Consider the single phase ac input signal given by

𝑣1 = 𝑉𝑚 sin 𝜔𝑡 (1)

• We have transformer turns ratio

𝑁1

𝑁2
=

𝑣1

𝑣2

• Rearranging, we can write transformer secondary voltage as

𝑣2 =
𝑁2

𝑁1
𝑉𝑚 sin 𝜔𝑡 (2)
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Full-Wave Rectifier
• For simplicity, consider 𝑁1 = 𝑁2.

• Then, Eqn. (2) can be written as 

𝑣2 = 𝑉𝑚 sin 𝜔𝑡 (3)
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Full-Wave Rectifier
(i) During positive half-cycle of ac supply (𝟎 ≤ 𝛚𝐭 ≤ 𝛑)

• The diode 𝐷1 is forward biased and hence it conducts, whereas the diode 𝐷2 is 
reverse biased and hence it remains off.

• The conducting diode can be replaced by its forward resistance 𝑅𝑓 and the 

non-conducting diode can be replaced by an open circuit and the equivalent 
circuit can be drawn as shown.
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Full-Wave Rectifier

132

Equivalent circuit during positive half-cycle
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Full-Wave Rectifier
• From the circuit,

𝑖𝑜 =
𝑣2

𝑅𝑓 + 𝑅𝐿

• Using 𝑣2 = 𝑉𝑚 sin 𝜔𝑡 , (from Eqn. (3))

𝑖𝑜 =
𝑉𝑚 sin 𝜔𝑡

𝑅𝑓 + 𝑅𝐿

• We can write

𝑖𝑜 = 𝐼𝑚 sin 𝜔𝑡  (4)

where 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿
 is the peak value of load current.

• The output voltage is then 𝑣𝑜 = 𝑖𝑜𝑅𝐿
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Full-Wave Rectifier
(ii) During negative half-cycle of ac supply (𝛑 ≤ 𝛚𝐭 ≤ 𝟐𝛑)

• The diode 𝐷2 is forward biased and hence it conducts, whereas the diode 𝐷1 is 
reverse biased and hence it remains off.

• The conducting diode can be replaced by its forward resistance 𝑅𝑓 and the 

non-conducting diode can be replaced by an open circuit and the equivalent 
circuit can be drawn as shown.
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Full-Wave Rectifier

135

Equivalent circuit during negative half-cycle
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Full-Wave Rectifier
• As the equivalent circuit is similar, we can write

𝑖𝑜 = 𝐼𝑚 sin 𝜔𝑡  (5)

where 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿
 is the peak value of load current.

• The output voltage is then 𝑣𝑜 = 𝑖𝑜𝑅𝐿
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Full-Wave Rectifier
• Using Eqns. (4) and (5), we can write

𝑖0 = 𝐼𝑚 sin 𝜔𝑡  (6)

where 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿
 is the peak value of load current.

Note: If the diode is ideal, then 𝑅𝑓 = 0. Then 𝐼𝑚 =
𝑉𝑚

𝑅𝐿
 (for an ideal diode).
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Waveforms

Input voltage

Load current

Output voltage

Current through 
diode 𝐷1

Current through 
diode 𝐷2
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Average or DC Load Current (𝐼𝑑𝑐)

𝐼𝑑𝑐 =
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑜𝑛𝑒 𝑐𝑦𝑐𝑙𝑒 𝑜𝑓 𝑖𝑜

𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑖𝑜

=
0

𝜋
𝑖𝑜 𝑑𝜔𝑡

𝜋
 

 =
1

𝜋
න

0

𝜋

𝐼𝑚 sin 𝜔𝑡 𝑑𝜔𝑡  

=
𝐼𝑚

𝜋
− cos 𝜔𝑡 0

𝜋 
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Average or DC Load Current (𝐼𝑑𝑐)

𝐼𝑑𝑐 =
𝐼𝑚

𝜋
− cos 𝜋 − (− cos 0)  

=
𝐼𝑚

𝜋
−(−1) − (−1)  

=
𝐼𝑚

𝜋
2  

 𝐼𝑑𝑐 =
2𝐼𝑚

𝜋
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Average or DC Output Voltage (𝑉𝑑𝑐)
𝑉𝑑𝑐 = 𝐼𝑑𝑐𝑅𝐿

 =
2𝐼𝑚

𝜋
𝑅𝐿

 =
2

𝜋

𝑉𝑚

𝑅𝑓 + 𝑅𝐿
𝑅𝐿

 𝑉𝑑𝑐 =
2𝑉𝑚

𝜋

𝑅𝐿

𝑅𝑓 + 𝑅𝐿

141

∵ 𝐼𝑚 =
𝑉𝑚

𝑅𝑓 + 𝑅𝐿
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Average or DC Output Voltage (𝑉𝑑𝑐)
Dividing numerator and denominator by 𝑅𝐿,

𝑉𝑑𝑐 =
(2𝑉𝑚/𝜋)

1 + (𝑅𝑓/𝑅𝐿)

Note: If the diode is ideal, then 𝑅𝑓 = 0. Then 𝑉𝑑𝑐 =
2𝑉𝑚

𝜋
 (for an ideal diode).
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RMS or AC Load Current (𝐼𝑟𝑚𝑠)
RMS = Root Mean Square

𝐼𝑟𝑚𝑠 =
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑜𝑛𝑒 𝑐𝑦𝑐𝑙𝑒 𝑜𝑓 𝑖𝑜

2

𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑖𝑜
2

=


0

𝜋
𝑖𝑜

2 𝑑𝜔𝑡

𝜋
 

=
1

𝜋
න

0

𝜋

𝐼𝑚
2 sin2 𝜔𝑡 𝑑𝜔𝑡 
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RMS or AC Load Current (𝐼𝑟𝑚𝑠)

= 𝐼𝑚

1

𝜋
න

0

𝜋

sin2 𝜔𝑡 𝑑𝜔𝑡 

= 𝐼𝑚

1

𝜋
න

0

𝜋 1 − cos 2𝜔𝑡

2
𝑑𝜔𝑡

 = 𝐼𝑚

1

2𝜋
න

0

𝜋

1 𝑑𝜔𝑡 − න
0

𝜋

cos 2𝜔𝑡 𝑑𝜔𝑡
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∵ sin2 𝜔𝑡 =
1 − cos 2𝜔𝑡

2
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RMS or AC Load Current (𝐼𝑟𝑚𝑠)

= 𝐼𝑚

1

2𝜋
[𝜔𝑡]0

𝜋 −
sin 2𝜔𝑡

2
0

𝜋

 

 = 𝐼𝑚

1

2𝜋
𝜋 − 0 −

1

2
sin 2𝜋 − sin 0  

 = 𝐼𝑚

1

2𝜋
𝜋  
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RMS or AC Load Current (𝐼𝑟𝑚𝑠)

𝐼𝑟𝑚𝑠  =
𝐼𝑚

2
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RMS or AC Output Voltage (𝑉𝑟𝑚𝑠)
𝑉𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅𝐿

 =
𝐼𝑚

2
𝑅𝐿

 =
1

2

𝑉𝑚

𝑅𝑓 + 𝑅𝐿
𝑅𝐿

 𝑉𝑟𝑚𝑠 =
𝑉𝑚

2

𝑅𝐿

𝑅𝑓 + 𝑅𝐿
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∵ 𝐼𝑚 =
𝑉𝑚

𝑅𝑓 + 𝑅𝐿
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RMS or AC Output Voltage (𝑉𝑟𝑚𝑠)
Dividing numerator and denominator by 𝑅𝐿,

𝑉𝑟𝑚𝑠 =
(𝑉𝑚/ 2)

1 + (𝑅𝑓/𝑅𝐿)

Note: If the diode is ideal, then 𝑅𝑓 = 0. Then 𝑉𝑟𝑚𝑠 =
𝑉𝑚

2
 (for an ideal diode).
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Rectification Efficiency (𝜂𝑟)
• Rectification efficiency is defined as the ratio of the dc output 

power to the ac input power supplied to the rectifier.

• It is given by,

𝜂𝑟 =
𝑃𝑑𝑐

𝑃𝑖

where 𝑃𝑑𝑐  is the dc output power of the rectifier

and 𝑃𝑖 is the ac input power to the rectifier. 
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Rectification Efficiency (𝜂𝑟)
• The dc output power is given by

𝑃𝑑𝑐 = 𝐼𝑑𝑐
2 𝑅𝐿

 =
2𝐼𝑚

𝜋

2

𝑅𝐿

 𝑃𝑑𝑐 =
4𝐼𝑚

2 𝑅𝐿

𝜋2

150

(2)

∵ 𝐼𝑑𝑐 =
2𝐼𝑚

𝜋
 for a FWR
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Rectification Efficiency (𝜂𝑟)
• The ac input power is given by

𝑃𝑖 = 𝐼𝑟𝑚𝑠
2 [𝑅𝑓 + 𝑅𝐿] 

 =
𝐼𝑚

2

2

[𝑅𝑓 + 𝑅𝐿]

𝑃𝑖 =
𝐼𝑚

2

2
[𝑅𝑓 + 𝑅𝐿] 
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(3)

∵ 𝐼𝑟𝑚𝑠 =
𝐼𝑚

2
 for a HWR
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Rectification Efficiency (𝜂𝑟)
• Using Eqns. (2) and (3) in (1),

𝜂𝑟 =

4𝐼𝑚
2 𝑅𝐿

𝜋2

𝐼𝑚
2

2 [𝑅𝑓 + 𝑅𝐿]

 =
8

𝜋2

𝑅𝐿

𝑅𝑓 + 𝑅𝐿

𝜂𝑟 =
0.8105𝑅𝐿

𝑅𝑓 + 𝑅𝐿
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Rectification Efficiency (𝜂𝑟)

𝜂𝑟 =
0.8105

1 + (𝑅𝑓/𝑅𝐿)
 

 %𝜂𝑟 =
0.8105

1 + (𝑅𝑓/𝑅𝐿)
× 100%

 %𝜂𝑟 =
81.05

1 + (𝑅𝑓/𝑅𝐿)
% 

Note: Maximum efficiency can be achieved for an ideal diode (𝑅𝑓= 0)

%𝜂𝑟(𝑚𝑎𝑥) = 81.05%
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Ripple Factor (𝛾)
• Ripple factor is the ratio of rms value of ac component present in 

the rectified output to the dc component of the rectified output.

• It is given by,

𝛾 =
𝑉𝑎𝑐

𝑉𝑑𝑐

where 𝑉𝑎𝑐 is the rms value of ac component present in the rectified 
output 

and 𝑉𝑑𝑐 is the dc component of the rectified output. 
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Ripple Factor (𝛾)
• The total power output is the sum of powers of dc and ac 

components.

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑑𝑐 + 𝑃𝑎𝑐

 
𝑉𝑟𝑚𝑠

2

𝑅𝐿
=

𝑉𝑑𝑐
2

𝑅𝐿
+

𝑉𝑎𝑐
2

𝑅𝐿

𝑉𝑟𝑚𝑠
2 = 𝑉𝑑𝑐

2 + 𝑉𝑎𝑐
2
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Ripple Factor (𝛾)
Dividing throughout by 𝑉𝑑𝑐

2 , we get

𝑉𝑟𝑚𝑠
2

𝑉𝑑𝑐
2 =

𝑉𝑑𝑐
2

𝑉𝑑𝑐
2 +

𝑉𝑎𝑐
2

𝑉𝑑𝑐
2

𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

= 1 +
𝑉𝑎𝑐

𝑉𝑑𝑐

2

𝑉𝑎𝑐

𝑉𝑑𝑐

2

=
𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

− 1
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Ripple Factor (𝛾)

𝑉𝑎𝑐

𝑉𝑑𝑐
=

𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

− 1 

Using Eqn. (1),

 𝛾 =
𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

− 1 
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Ripple Factor (𝛾)

In a full-wave rectifier, 𝑉𝑟𝑚𝑠 =
(𝑉𝑚/ 2)

1+(𝑅𝑓/𝑅𝐿)
 and 𝑉𝑑𝑐 =

(2𝑉𝑚/𝜋)

1+(𝑅𝑓/𝑅𝐿)

𝛾 =

(𝑉𝑚/ 2)
1 + (𝑅𝑓/𝑅𝐿)

(2𝑉𝑚/𝜋)
1 + (𝑅𝑓/𝑅𝐿)

2

− 1 

𝛾 =
𝜋

2 2
 

2

− 1 
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Ripple Factor (𝛾)

𝛾 =
𝜋2

8
− 1 

𝛾 = 0.483 
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Ripple Factor (𝛾)
Note: We have 𝛾 = 0.483.

That means, 

𝛾 =
𝑉𝑎𝑐

𝑉𝑑𝑐
= 0.483 

 𝑉𝑎𝑐 = 0.483𝑉𝑑𝑐  
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Peak Inverse Voltage (PIV)
• Peak Inverse Voltage (PIV) is the maximum reverse voltage to which 

the diode can be subjected. 

• If the applied reverse voltage across the diode is greater than its PIV 
rating, the reverse breakdown of the diode which causes a 
permanent damage to the diode.
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Peak Inverse Voltage (PIV)
• Consider the equivalent circuit of the full-wave rectifier during 

positive half-cycle.

162

• From the circuit,

𝑣2 + 𝑣2 = 𝑣𝑟

𝑣𝑟 = 2𝑣2

 𝑣𝑟 = 2𝑉𝑚 sin 𝜔𝑡

• Now, 

𝑃𝐼𝑉 = 𝑣𝑟(𝑚𝑎𝑥)

𝑃𝐼𝑉 = 2𝑉𝑚 
𝑣𝑟 is the instantaneous reverse voltage across the diode 𝐷2

Conducting diode is 
replaced by a short circuit 
and non-conducting diode 
is replaced by an open 
circuit.
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Full-Wave Rectifier – Numerical Example 1
The input to the full wave rectifier is 𝑣(𝑡)  =  200 sin 50𝑡. If 𝑅𝐿 is 1 𝑘Ω and 
forward resistance of diode is 50 Ω, find:

i. D.C current through the circuit

ii. The A.C (rms) value of current through the circuit

iii. The D.C output voltage

iv. The A.C power input

v. The D.C power output

vi. Rectifier efficiency. 
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Full-Wave Rectifier – Numerical Example 1
Solution:

Given 𝑣(𝑡) = 200 sin 50𝑡 𝑉

𝑅𝐿 = 1 kΩ = 1000Ω 

𝑅𝑓 = 50 Ω 

Comparing 𝑣(𝑡) with 𝑉𝑚 sin 𝜔𝑡,

We have 𝑉𝑚 = 200 𝑉 and 𝜔 = 50 𝑟𝑎𝑑/𝑠
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Full-Wave Rectifier – Numerical Example 1

Then, 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿

                 =
200 𝑉

50 Ω+1000 Ω
 

           𝐼𝑚 = 190.48 𝑚𝐴

DC Load Current

          𝐼𝑑𝑐 =
2𝐼𝑚

π

                 =
2×190.48 𝑚𝐴 

𝜋

          𝐼𝑑𝑐 = 121.26 𝑚𝐴
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RMS Load Current

        𝐼𝑟𝑚𝑠 =
𝐼𝑚

2

                 =
190.48 𝑚𝐴

2

        𝐼𝑟𝑚𝑠 = 134.69 𝑚𝐴

DC Output Voltage

 𝑉𝑑𝑐 = 𝐼𝑑𝑐𝑅𝐿

          = 121.26 𝑚𝐴 × 1 kΩ

 𝑉𝑑𝑐 = 121.26 𝑉

RMS Output Voltage

 𝑉𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅𝐿

           = 134.69 𝑚𝐴 × 1 kΩ

 𝑉𝑟𝑚𝑠 = 134.69 𝑉
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Full-Wave Rectifier – Numerical Example 1
AC Input Power

          𝑃𝑖 = 𝐼𝑟𝑚𝑠
2 [𝑅𝑓 + 𝑅𝐿]

               = (134.69𝑚) 2× (50 + 1000)

          𝑃𝑖 = 19.048 𝑊 

DC Output Power

          𝑃𝑑𝑐 = 𝐼𝑑𝑐
2 𝑅𝐿

                 = (121.26𝑚) 2× 1000          

          𝑃𝑑𝑐 = 14.704 𝑊 
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Rectification Efficiency

 %𝜂𝑟 =
𝑃𝑑𝑐

𝑃𝑖
× 100 %

          =
14.704

19.048
× 100 %

 %𝜂𝑟 = 77.19 %
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Full-Wave Rectifier – Numerical Example 1
Ripple Factor

 𝛾 =
𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

− 1 

     =
134.69

121.26

2
− 1 

 𝛾 = 0.483
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Peak Inverse Voltage

                    𝑃𝐼𝑉 = 2𝑉𝑚

                    𝑃𝐼𝑉 = 2 × 200 𝑉

                    𝑃𝐼𝑉 = 400 𝑉
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Full-Wave Rectifier – Numerical Example 2
The input voltage applied to the primary of a 4:1 step down transformer of a full 
wave centre tap rectifier is 230 V, 50 Hz. If the load resistance is 600 Ω and 
forward resistance is 20 Ω, determine the following:

i. dc output power

ii. Rectification efficiency

iii. PIV

Solution:

Given 𝑉1 = 230 𝑉, 𝑓 = 50 𝐻𝑧

𝑁1: 𝑁2 = 4: 1 

𝑅𝐿 = 600 Ω, 𝑅𝑓 = 20 Ω 
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Full-Wave Rectifier – Numerical Example 2
For the given circuit,

𝑁1

𝑁2
=

𝑉1

2𝑉2

So             2𝑉2 =
𝑁2

𝑁1
𝑉1

                    𝑉2 =
𝑁2

2𝑁1
𝑉1

                    𝑉2 =
1

2×4
× 230 𝑉

                    𝑉2 = 28.75 𝑉

169

This value of 𝑉2 is the rms value and the peak 
value can be found using

             𝑉𝑚 = 2V2

                   = 2 × 28.75 𝑉

             𝑉𝑚 = 40.658 𝑉
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Full-Wave Rectifier – Numerical Example 2

Then, 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿

                 =
40.658 𝑉

20 Ω+600 Ω
 

           𝐼𝑚 = 65.577 𝑚𝐴

DC Load Current

          𝐼𝑑𝑐 =
2𝐼𝑚

π

                 =
2×65.577 𝑚𝐴 

𝜋

          𝐼𝑑𝑐 = 41.747 𝑚𝐴
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RMS Load Current

        𝐼𝑟𝑚𝑠 =
𝐼𝑚

2

                 =
65.577 𝑚𝐴

2

        𝐼𝑟𝑚𝑠 = 46.369 𝑚𝐴

DC Load Voltage

 𝑉𝑑𝑐 = 𝐼𝑑𝑐𝑅𝐿

          = 41.747 𝑚𝐴 × 600 Ω

 𝑉𝑑𝑐 = 25. 048 𝑉

RMS Load Voltage

 𝑉𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅𝐿

           = 46.369 𝑚𝐴 × 600 Ω

 𝑉𝑟𝑚𝑠 = 27.821 𝑉
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Full-Wave Rectifier – Numerical Example 2
AC Input Power

          𝑃𝑖 = 𝐼𝑟𝑚𝑠
2 [𝑅𝑓 + 𝑅𝐿]

               = (46.369𝑚) 2× (20 + 600)

          𝑃𝑖 = 1.333 𝑊 

DC Output Power

          𝑃𝑑𝑐 = 𝐼𝑑𝑐
2 𝑅𝐿

                 = (41.747𝑚) 2× 600          

          𝑃𝑑𝑐 = 1.045 𝑊 
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Rectification Efficiency

 %𝜂𝑟 =
𝑃𝑑𝑐

𝑃𝑖
× 100 %

          =
1.045 

1.333 
× 100 %

 %𝜂𝑟 = 78.39 %

Peak Inverse Voltage

 𝑃𝐼𝑉 = 2𝑉𝑚

          = 2 × 40.658 𝑉

 𝑃𝐼𝑉 = 81.316 𝑉
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Full-Wave Rectifier – Numerical Example 3
A full wave rectifier uses 2 diodes having internal resistance of 10 Ω each. The 
transformer RMS secondary voltage from centre to each end is 200 𝑉. Find 𝐼𝑚, 
𝐼𝑑𝑐,𝐼𝑟𝑚𝑠 and 𝑉𝑑𝑐 if the load is 800 Ω.

Solution:

Given 𝑉2 = 200 𝑉, 𝑅𝑓 = 10 Ω and 𝑅𝐿 = 800 Ω 

The given 𝑉2 is the rms value of the input and we can find the peak value using

              𝑉𝑚 = 2𝑉2

                    = 2 × 200 𝑉

              𝑉𝑚 = 282.84 𝑉
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Full-Wave Rectifier – Numerical Example 3

Then, 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿

                 =
282.84 𝑉

10 Ω+800 Ω
 

           𝐼𝑚 = 349.185 𝑚𝐴

DC Load Current

          𝐼𝑑𝑐 =
2𝐼𝑚

π

                 =
2×349.185 𝑚𝐴 

𝜋

          𝐼𝑑𝑐 = 222.298 𝑚𝐴
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RMS Load Current

        𝐼𝑟𝑚𝑠 =
𝐼𝑚

2

                 =
349.185 𝑚𝐴

2

        𝐼𝑟𝑚𝑠 = 246.911 𝑚𝐴

DC Load Voltage

 𝑉𝑑𝑐 = 𝐼𝑑𝑐𝑅𝐿

          = 222.298 𝑚𝐴 × 800 Ω

 𝑉𝑑𝑐 = 177.836 𝑉

RMS Load Voltage

 𝑉𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠𝑅𝐿

           = 246.911 𝑚𝐴 × 800 Ω

 𝑉𝑟𝑚𝑠 = 148.146 𝑉
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Full-Wave Rectifier – Numerical Example 4
A full wave rectifier supplies a load of 1000 Ω. The ac voltage applied to it is 
200 − 0 − 200 𝑉 (𝑟𝑚𝑠). If diode resistance is neglected, calculate (i) 𝐼𝑑𝑐  (ii) 𝐼𝑟𝑚𝑠 
(iii) efficiency (𝜂).

Solution:

Given 𝑉2 = 200 𝑉, 𝑅𝐿 = 1000 Ω. Take 𝑅f = 0 Ω (given 𝑅f is neglected)

The given 𝑉2 is the rms value of the input and we can find the peak value using

              𝑉𝑚 = 2𝑉2

                    = 2 × 200 𝑉

              𝑉𝑚 = 282.84 𝑉
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Full-Wave Rectifier – Numerical Example 4

Then, 𝐼𝑚 =
𝑉𝑚

𝑅𝑓+𝑅𝐿

                 =
282.84 𝑉

0 Ω+1000 Ω
 

           𝐼𝑚 = 282.84 𝑚𝐴

DC Load Current

          𝐼𝑑𝑐 =
2𝐼𝑚

π

                 =
2×282.84 𝑚𝐴 

𝜋

          𝐼𝑑𝑐 = 180.06 𝑚𝐴
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RMS Load Current

        𝐼𝑟𝑚𝑠 =
𝐼𝑚

2

                 =
282.84 𝑚𝐴

2

        𝐼𝑟𝑚𝑠 = 200 𝑚𝐴
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Full-Wave Rectifier – Numerical Example 4
AC Input Power

          𝑃𝑖 = 𝐼𝑟𝑚𝑠
2 [𝑅𝑓 + 𝑅𝐿]

               = (200𝑚) 2× (0 + 1000)

          𝑃𝑖 = 40 𝑊 

DC Output Power

          𝑃𝑑𝑐 = 𝐼𝑑𝑐
2 𝑅𝐿

                 = (180.06 𝑚) 2× 1000          

          𝑃𝑑𝑐 = 32.42 𝑊 
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Rectification Efficiency

 %𝜂𝑟 =
𝑃𝑑𝑐

𝑃𝑖
× 100 %

          =
32.42

40 
× 100 %

 %𝜂𝑟 = 81.05 %
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Bridge Rectifier
• A Bridge Rectifier (BR) is a full-wave rectifier constructed using four 

diodes connected in the form of a bridge.

• It converts both the half-cycles of the input ac to pulsating dc.
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Bridge Rectifier
Circuit Diagram

178

Step-down
Transformer
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Bridge Rectifier
• The bridge rectifier consists of four diodes 𝐷1, 𝐷2, 𝐷3 and 𝐷4 which 

are arranged in the form of a bridge as shown.

• A step-down transformer is used to reduce the available ac voltage 
to the required level.

• Resistor 𝑅𝐿 is the load resistance which consumes power from the 
rectifier.
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Bridge Rectifier
Operation

• Consider the single phase ac input signal given by

𝑣1 = 𝑉𝑚 sin 𝜔𝑡 (1)

• We have transformer turns ratio

𝑁1

𝑁2
=

𝑣1

𝑣2

• Rearranging, we can write transformer secondary voltage as

𝑣2 =
𝑁2

𝑁1
𝑉𝑚 sin 𝜔𝑡 (2)
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Bridge Rectifier
• For simplicity, consider 𝑁1 = 𝑁2.

• Then, Eqn. (2) can be written as 

𝑣2 = 𝑉𝑚 sin 𝜔𝑡 (3)
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Bridge Rectifier
(i) During positive half-cycle of ac supply (𝟎 ≤ 𝛚𝐭 ≤ 𝛑)

• The diodes 𝐷1 and 𝐷2 are forward biased and hence they conduct, whereas 
the diodes 𝐷3 and 𝐷4 are reverse biased and hence they remain off.

• The conducting diodes can be replaced by forward resistance 𝑅𝑓 and the non-

conducting diodes can be replaced by open circuit and the equivalent circuit 
can be drawn as shown.
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Bridge Rectifier

183

Equivalent circuit during positive half-cycle
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Bridge Rectifier
• From the circuit,

𝑖𝑜 =
𝑣2

𝑅𝑓 + 𝑅𝐿 + 𝑅𝑓

• Using 𝑣2 = 𝑉𝑚 sin 𝜔𝑡 , (from Eqn. (3))

𝑖𝑜 =
𝑉𝑚 sin 𝜔𝑡

2𝑅𝑓 + 𝑅𝐿

• We can write

𝑖𝑜 = 𝐼𝑚 sin 𝜔𝑡  (4)

where 𝐼𝑚 =
𝑉𝑚

2𝑅𝑓+𝑅𝐿
 is the peak value of load current.

• The output voltage is then 𝑣𝑜 = 𝑖𝑜𝑅𝐿
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Bridge Rectifier
(ii) During negative half-cycle of ac supply (𝛑 ≤ 𝛚𝐭 ≤ 𝟐𝛑)

• The diodes 𝐷3 and 𝐷4 are forward biased and hence they conduct, whereas 
the diodes 𝐷1 and 𝐷2 are reverse biased and hence they remain off.

• The conducting diodes can be replaced by forward resistance 𝑅𝑓 and the non-

conducting diodes can be replaced by open circuit.
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Bridge Rectifier
• As the equivalent circuit is similar, we can write

𝑖𝑜 = 𝐼𝑚 sin 𝜔𝑡  (5)

where 𝐼𝑚 =
𝑉𝑚

2𝑅𝑓+𝑅𝐿
 is the peak value of load current.

• The output voltage is then 𝑣𝑜 = 𝑖𝑜𝑅𝐿
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Bridge Rectifier
• Using Eqns. (4) and (5), we can write

𝑖0 = 𝐼𝑚 sin 𝜔𝑡  (6)

where 𝐼𝑚 =
𝑉𝑚

2𝑅𝑓+𝑅𝐿
 is the peak value of load current.

Note: If the diodes are ideal, then 𝑅𝑓 = 0. Then 𝐼𝑚 =
𝑉𝑚

𝑅𝐿
 (for an ideal diode).

187



Shrishail Bhat, Dept. of ECE, AITM Bhatkal 188

Waveforms

Input voltage

Load current

Output voltage

Current through 
diode 𝐷1& 𝐷2

Current through 
diode 𝐷3 & 𝐷4
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Bridge Rectifier
Average or DC Load Current (𝐼𝑑𝑐)

𝐼𝑑𝑐 =
2𝐼𝑚

𝜋

Average or DC Output Voltage (𝑉𝑑𝑐)

𝑉𝑑𝑐 =
2𝑉𝑚

𝜋

𝑅𝐿

2𝑅𝑓 + 𝑅𝐿

𝑉𝑑𝑐 =
(2𝑉𝑚/𝜋)

1 + (2𝑅𝑓/𝑅𝐿)

Note: If the diodes are ideal, then 𝑅𝑓 = 0. Then 𝑉𝑑𝑐 =
2𝑉𝑚

𝜋
 (for an ideal diode).
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Bridge Rectifier
RMS or AC Load Current (𝐼𝑟𝑚𝑠)

𝐼𝑟𝑚𝑠 =
𝐼𝑚

2

RMS or AC Output Voltage (𝑉𝑟𝑚𝑠)

𝑉𝑟𝑚𝑠 =
𝑉𝑚

2

𝑅𝐿

2𝑅𝑓 + 𝑅𝐿

𝑉𝑟𝑚𝑠 =
(𝑉𝑚/ 2)

1 + (2𝑅𝑓/𝑅𝐿)

Note: If the diodes are ideal, then 𝑅𝑓 = 0. Then 𝑉𝑟𝑚𝑠 =
𝑉𝑚

2
 (for an ideal diode).
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Bridge Rectifier
Rectification Efficiency (𝜂𝑟)

 %𝜂𝑟 =
81.05

1 + (2𝑅𝑓/𝑅𝐿)
% 

Note: If the diodes are ideal, then 𝑅𝑓 = 0. Then %𝜂𝑟(𝑚𝑎𝑥) = 81.05%

Ripple Factor

𝛾 =
𝑉𝑟𝑚𝑠

𝑉𝑑𝑐

2

− 1 

𝛾 = 0.483 
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Bridge Rectifier
Peak Inverse Voltage (PIV)

Consider the equivalent circuit of the full-wave bridge rectifier during positive 
half-cycle.

192

• From the circuit,

𝑣𝑟 = 𝑣2

 𝑣𝑟 = 𝑉𝑚 sin 𝜔𝑡

• Now, 

𝑃𝐼𝑉 = 𝑣𝑟(𝑚𝑎𝑥)

𝑃𝐼𝑉 = 𝑉𝑚 𝑣𝑟 is the instantaneous reverse voltage across the diode 𝐷2

Conducting diode is 
replaced by a short circuit 
and non-conducting diode 
is replaced by an open 
circuit.
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Bridge Rectifier – Numerical Example 1
Determine the peak output voltage and current for a bridge rectifier circuit when 
the secondary RMS voltage is 30 𝑉, load resistance is 300 Ω and the diode 
forward drop is 0.7 𝑉.

Solution:

Given 𝑉𝑖 = 30 𝑉, 𝑅𝐿 = 300 Ω, 𝑉𝐹 = 0.7 𝑉

The given 𝑉𝑖 is the rms value and the peak value can be found using

𝑉𝑝𝑖 = 2𝑉𝑖  

 = 2 × 30 𝑉

 𝑉𝑝𝑖 = 42.42 𝑉
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Bridge Rectifier – Numerical Example 1
i) The peak output voltage 

𝑉𝑝𝑜 = 𝑉𝑝𝑖 − 2𝑉𝐹

 = 42.42 𝑉 − (2 × 0.7 𝑉)

𝑉𝑝𝑜 = 41.02 𝑉 

ii) The peak current

𝐼𝑝 =
𝑉𝑝𝑜

𝑅𝐿

 =
41.02 𝑉

300 Ω
 𝐼𝑝 = 136.73 𝑚𝐴 
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Capacitor Filter Circuit
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Capacitor Filter Circuit
• Filter is a circuit used to reduce the ripple content present in the rectified 

output.

• A capacitor connected in parallel with the load resistor acts as a filter by 
reducing the ripple content present in the rectified output.

• The output from half-wave and full-wave rectifiers is not a smooth dc 
due to the ripple content.
• The ripple content of half-wave rectified output is 121% of dc component 

whereas it is 48.3% of dc component in full-wave rectified output.

• In order to obtain smooth dc, it is necessary to filter out the ripple 
content.
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Half-Wave Rectifier with a ‘C’ Filter
Circuit Diagram

197

Half-wave rectifier with capacitor filter
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Half-Wave Rectifier with a ‘C’ Filter
Output Voltage Waveform

198

𝑉𝑟(𝑝−𝑝) is peak-to-peak ripple voltage on capacitor

𝑡𝑐 is charging time of capacitor
𝑡𝑑 is discharging time of capacitor
𝑇 is the time period of output waveform 𝑇 = 𝑡𝑐 + 𝑡𝑑

Output voltage waveforms with and without ‘C’ filter
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Half-Wave Rectifier with a ‘C’ Filter
• During the positive half-cycle of the ac supply, the diode conducts 

and charges the capacitor to the peak value 𝑉𝑚 of the input voltage.

• When the input voltage falls below 𝑉𝑚, the diode stops conducting.

• Now, the capacitor starts discharging into the load 𝑅𝐿 and the 
voltage on capacitor decreases.

• The discharging of the capacitor continues till the diode starts 
conducting again and charges the capacitor in the next positive 
half-cycle of the ac supply.
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Half-Wave Rectifier with a ‘C’ Filter
• From the waveforms, we find that without capacitor filter, the 

output voltage 𝑣𝑜 varies between 0 and 𝑉𝑚 and with capacitor 
filter, the variation is between [𝑉𝑚 − 𝑉𝑟(𝑝−𝑝)] and 𝑉𝑚.]

• It can be observed that, with filter, the variation in 𝑣𝑜 is smaller 
than that without filter.

• Thus, by using a capacitor filter, the ripple content of the output 
voltage is considerably reduced.
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Half-Wave Rectifier with a ‘C’ Filter
Expression for Ripple Factor

• We know that, the ripple factor

𝛾 =
𝑉𝑎𝑐

𝑉𝑑𝑐

• For large value of capacitance, the ripple voltage can be 
approximated to a triangular waveform with a peak-to-peak value 
𝑉𝑟(𝑝−𝑝).
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Half-Wave Rectifier with a ‘C’ Filter

202

Ripple voltage on capacitor approximated by triangular waveform
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Half-Wave Rectifier with a ‘C’ Filter
• For a triangular waveform with peak-to-peak value of 𝑉𝑟(𝑝−𝑝), the 

rms value is given by

𝑉𝑎𝑐 =
𝑉𝑟(𝑝−𝑝)

2 3

• During the period 𝑡𝑑, the capacitor discharges a steady current into 
the load, i.e.,

𝑖𝑐 = 𝐼𝑑𝑐 = 𝐶
𝑑𝑣𝑜

𝑑𝑡

203

(2)
∵ 𝑉𝑟𝑚𝑠 =

𝑉𝑚

3
for a triangular wave

(3)
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Half-Wave Rectifier with a ‘C’ Filter
• From the figure, during discharge,

𝑑𝑣𝑜

𝑑𝑡
=

𝑉𝑟(𝑝−𝑝)

𝑡𝑑

• Using Eqn. (4) in (3), 

𝐼𝑑𝑐 = 𝐶
𝑉𝑟(𝑝−𝑝)

𝑡𝑑

𝑉𝑟(𝑝−𝑝)  =
𝐼𝑑𝑐𝑡𝑑

𝐶
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Half-Wave Rectifier with a ‘C’ Filter
• We know that 𝑇 = 𝑡𝑐 + 𝑡𝑑. 

• When C is large, 𝑡𝑐 ≪ 𝑡𝑑. So 𝑡𝑑 ≅ 𝑇.

• So from Eqn. (5),

𝑉𝑟(𝑝−𝑝)  =
𝐼𝑑𝑐𝑇

𝐶

• Using 𝑇 = 1/𝑓

𝑉𝑟(𝑝−𝑝)  =
𝐼𝑑𝑐

𝑓𝐶
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Half-Wave Rectifier with a ‘C’ Filter

𝑉𝑟(𝑝−𝑝)  =
𝑉𝑑𝑐

𝑓𝐶𝑅𝐿

• From Eqn. (2), 𝑉𝑟(𝑝−𝑝) = 2 3𝑉𝑎𝑐

• Using this in (7), we get

2 3𝑉𝑎𝑐 =
𝑉𝑑𝑐

𝑓𝐶𝑅𝐿

𝑉𝑎𝑐

𝑉𝑑𝑐
=

1

2 3𝑓𝐶𝑅𝐿
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(7) ∵ 𝐼𝑑𝑐 =
𝑉𝑑𝑐

𝑅𝐿
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Half-Wave Rectifier with a ‘C’ Filter
• Hence the ripple factor

𝛾 =
1

2 3𝑓𝐶𝑅𝐿
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Half-Wave Rectifier with a ‘C’ Filter
DC Output Voltage (𝑽𝒅𝒄)

• The triangular waveform of peak-to-peak value 𝑉𝑟(𝑝−𝑝) has an average 

value of 
𝑉𝑟(𝑝−𝑝)

2
.

• Therefore, the dc output voltage

𝑉𝑑𝑐  = 𝑉𝑚 −
𝑉𝑟(𝑝−𝑝)

2

• Substituting for 𝑉𝑟(𝑝−𝑝) from Eqn. (6),

𝑉𝑑𝑐  = 𝑉𝑚 −
𝐼𝑑𝑐

2𝑓𝐶
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Half-Wave Rectifier with a ‘C’ Filter

• If the capacitance C is large, 
1

2𝑓𝐶
 is small.

• Hence, 𝑉𝑑𝑐 ≅ 𝑉𝑚    (for large C)
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Full-Wave Rectifier with a ‘C’ Filter
Circuit Diagram

210

Full-wave rectifier with capacitor filter
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Full-Wave Rectifier with a ‘C’ Filter
Circuit Diagram

211

Bridge rectifier with capacitor filter
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Full-Wave Rectifier with a ‘C’ Filter
Output Voltage Waveform

212

𝑉𝑟(𝑝−𝑝) is peak-to-peak ripple voltage on capacitor

𝑡𝑐 is charging time of capacitor
𝑡𝑑 is discharging time of capacitor
𝑇

2
 is the time period of output waveform 

𝑇

2
= 𝑡𝑐 + 𝑡𝑑

Output voltage waveforms with and without ‘C’ filter
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Full-Wave Rectifier with a ‘C’ Filter
For Two-Diode Full-Wave Rectifier with ‘C’ Filter

• During the positive half-cycle of the ac supply, the diode 𝐷1 conducts and 
charges the capacitor to the peak value 𝑉𝑚 of the input voltage.

• When the input voltage falls below 𝑉𝑚, the diode stops conducting.

• Now, the capacitor starts discharging into the load 𝑅𝐿 and the voltage on 
capacitor decreases.

• The discharging of the capacitor continues until the diode 𝐷2 starts conducting 
in the next half-cycle and charges the capacitor again.
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Full-Wave Rectifier with a ‘C’ Filter
For Full-Wave Bridge Rectifier with ‘C’ Filter

• During the positive half-cycle of the ac supply, the diodes 𝐷1 and 𝐷2 conduct 
and charge the capacitor to the peak value 𝑉𝑚 of the input voltage.

• When the input voltage falls below 𝑉𝑚, the diodes 𝐷1 and 𝐷2 stop conducting.

• Now, the capacitor starts discharging into the load 𝑅𝐿 and the voltage on 
capacitor decreases.

• The discharging of the capacitor continues until the diodes 𝐷3 and diodes 𝐷1 
and 𝐷4 start conducting in the next half-cycle and charge the capacitor again.
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Full-Wave Rectifier with a ‘C’ Filter
• From the waveforms, we find that without capacitor filter, the 

output voltage 𝑣𝑜 varies between 0 and 𝑉𝑚 and with capacitor 
filter, the variation is between [𝑉𝑚 − 𝑉𝑟(𝑝−𝑝)] and 𝑉𝑚.]

• It can be observed that, with filter, the variation in 𝑣𝑜 is smaller 
than that without filter.

• Thus, by using a capacitor filter, the ripple content of the output 
voltage is considerably reduced.
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Full-Wave Rectifier with a ‘C’ Filter
Expression for Ripple Factor

• We know that, the ripple factor

𝛾 =
𝑉𝑎𝑐

𝑉𝑑𝑐

• For large value of capacitance, the ripple voltage can be 
approximated to a triangular waveform with a peak-to-peak value 
𝑉𝑟(𝑝−𝑝).

216
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Full-Wave Rectifier with a ‘C’ Filter

217

Ripple voltage on capacitor approximated by triangular waveform
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Full-Wave Rectifier with a ‘C’ Filter
• For a triangular waveform with peak-to-peak value of 𝑉𝑟(𝑝−𝑝), the 

rms value is given by

𝑉𝑎𝑐 =
𝑉𝑟(𝑝−𝑝)

2 3

• During the period 𝑡𝑑, the capacitor discharges a steady current into 
the load, i.e.,

𝑖𝑐 = 𝐼𝑑𝑐 = 𝐶
𝑑𝑣𝑜

𝑑𝑡

218

(2)
∵ 𝑉𝑟𝑚𝑠 =

𝑉𝑚

3
for a triangular wave

(3)
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Full-Wave Rectifier with a ‘C’ Filter
• From the figure, during discharge,

𝑑𝑣𝑜

𝑑𝑡
=

𝑉𝑟(𝑝−𝑝)

𝑡𝑑

• Using Eqn. (4) in (3), 

𝐼𝑑𝑐 = 𝐶
𝑉𝑟(𝑝−𝑝)

𝑡𝑑

𝑉𝑟(𝑝−𝑝)  =
𝐼𝑑𝑐𝑡𝑑

𝐶
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Full-Wave Rectifier with a ‘C’ Filter
• We know that 

𝑇

2
= 𝑡𝑐 + 𝑡𝑑. 

• When C is large, 𝑡𝑐 ≪ 𝑡𝑑. So 𝑡𝑑 ≅
𝑇

2
.

• So from Eqn. (5),

𝑉𝑟(𝑝−𝑝)  =
𝐼𝑑𝑐𝑇

2𝐶
• Using 𝑇 = 1/𝑓

𝑉𝑟(𝑝−𝑝)  =
𝐼𝑑𝑐

2𝑓𝐶
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Full-Wave Rectifier with a ‘C’ Filter

𝑉𝑟(𝑝−𝑝)  =
𝑉𝑑𝑐

2𝑓𝐶𝑅𝐿

• From Eqn. (2), 𝑉𝑟(𝑝−𝑝) = 2 3𝑉𝑎𝑐

• Using this in (7), we get

2 3𝑉𝑎𝑐 =
𝑉𝑑𝑐

2𝑓𝐶𝑅𝐿

𝑉𝑎𝑐

𝑉𝑑𝑐
=

1

4 3𝑓𝐶𝑅𝐿
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(7) ∵ 𝐼𝑑𝑐 =
𝑉𝑑𝑐

𝑅𝐿
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Full-Wave Rectifier with a ‘C’ Filter
• Hence the ripple factor

𝛾 =
1

4 3𝑓𝐶𝑅𝐿
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Full-Wave Rectifier with a ‘C’ Filter
DC Output Voltage (𝑽𝒅𝒄)

• The triangular waveform of peak-to-peak value 𝑉𝑟(𝑝−𝑝) has an average 

value of 
𝑉𝑟(𝑝−𝑝)

2
.

• Therefore, the dc output voltage

𝑉𝑑𝑐  = 𝑉𝑚 −
𝑉𝑟(𝑝−𝑝)

2

• Substituting for 𝑉𝑟(𝑝−𝑝) from Eqn. (6),

𝑉𝑑𝑐  = 𝑉𝑚 −
𝐼𝑑𝑐

4𝑓𝐶
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Full-Wave Rectifier with a ‘C’ Filter

• If the capacitance C is large, 
1

4𝑓𝐶
 is small.

• Hence, 𝑉𝑑𝑐 ≅ 𝑉𝑚    (for large C)

224



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Full-Wave Rectifier Power Supply

225

Bridge rectifier circuit with a reservoir capacitor to smooth the output voltage and a 

surge-limiting resistor to protect the diodes.

• Full-wave rectifiers require filter circuits in order to convert the output 
waveform to direct voltage.
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RC 𝜋 Filter
• The ripple voltage that appears across the reservoir capacitor in a 

rectifier power supply can be attenuated using an additional resistor and 
capacitor, which together function as an ac voltage divider.
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RC 𝜋 Filter
• C1 is the reservoir capacitor, and R1 and C2 are the additional 

components.

• The combination of C1, R1 and C2 is referred to as a 𝜋 filter, because of the 
𝜋 -shaped arrangement of the circuit components.
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RC 𝜋 Filter
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RC 𝜋 Filter
• The reservoir capacitor produces a sawtooth (ripple) waveform across C1 

regardless of the presence of the additional components.

• The sawtooth waveform is composed of a fundamental ac voltage (same 
frequency as the ripple) and a number of smaller-amplitude, higher-
frequency harmonic components. 

• Due to their higher frequencies, the harmonic components are more 
severely attenuated than the fundamental frequency component by the 
voltage division across R1 and C2.

• The waveform developed across C2 (the filter output) is essentially an 
attenuated version of the sinusoidal fundamental component.
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RC 𝜋 Filter
• The peak value of the fundamental component of the sawtooth 

waveform is

𝑣𝑝 =
𝑉𝑟

𝜋

• where 𝑉𝑟 is the ripple voltage peak-to-peak amplitude

• The ac voltage developed across C2 is the filter ac output and is given by

𝑣𝑜 =
𝑣𝑖𝑋𝐶2

𝑅1
2 + 𝑋𝐶2

2
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Zener Diode

231
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Junction Breakdown
• When a PN junction diode is 

reverse biased, there is 
normally only a very small 
reverse saturation current 𝐼𝑆.

• When the reverse voltage is 
sufficiently increased, the 
junction breaks down and a 
large reverse current flows.

232

Diode reverse characteristic
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Junction Breakdown
• If the reverse current is limited by 

means of a suitable series-connected 
resistor 𝑅1, the power dissipation in 
the diode can be kept to a level that 
will not destroy the device.

• In this case, the diode may be 
operated continuously in reverse 
breakdown.

• The reverse current returns to its 
normal level when the voltage is 
reduced below the reverse 
breakdown level.
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Diode-resistor circuit
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Junction Breakdown
• There are two mechanisms that cause breakdown in a reverse 

biased PN junction:

• Zener breakdown

• Avalanche breakdown
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Junction Breakdown
Zener Breakdown

• When the depletion region is very narrow, the electric field strength 
produced by a reverse bias voltage can be very high.

• The high-intensity electric field causes electrons to break away from 
their atoms, thus converting the depletion region from an insulating 
material into a conductor.

• This is called ionization by electric field, also called Zener breakdown.

• This usually occurs with reverse bias voltage less than 5 V.
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Junction Breakdown
Avalanche Breakdown

• When the depletion region is too wide, the electrons in the reverse 
saturation current can be given sufficient energy to strike atoms 
within the depletion region and cause other electrons to break free.

• The electrons released in this way collide with other atoms to 
produce more free electrons in an avalanche effect.

• This is called ionization by collision, also called avalanche breakdown.

• This usually occurs with reverse bias voltage above 5 V.
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Zener Diode
• Zener diode is a diode designed specially for operation in reverse 

breakdown.

• Also called breakdown diode.

• Zener diodes have a breakdown voltage that remains extremely 
stable over a wide range of current levels.

• This property makes Zener diodes suitable for many useful 
applications as a voltage reference source.
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Zener Diode

238

Circuit symbol of Zener diode
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Zener Characteristics and Parameters

239

Typical characteristics of a Zener diode

𝑉𝑍  → Zener breakdown voltage
𝐼𝑍𝑇 → Test current for measuring 𝑉𝑍

𝐼𝑍𝐾 → Reverse current near the knee of the characteristic,
    the minimum reverse current to sustain breakdown
𝐼𝑍𝑀 → Maximum Zener current, limited by the 
     maximum power dissipation
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Zener Characteristics and Parameters
• Dynamic Impedance

𝑍𝑍 =
∆𝑉𝑍

∆𝐼𝑍

• Power Dissipation

𝑃𝐷 = 𝑉𝑍𝐼𝑍𝑀

• Equivalent Circuit

240

DC equivalent circuit AC equivalent circuit
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Zener Diode – Numerical Example
A 4.3 V Zener diode is connected in series with 820 Ω resistor and DC 
supply voltage of 12 V. Find the diode current and the power dissipation.

Solution:

Given,

𝑉𝑍 = 4.3 𝑉, 𝑅 = 820 Ω , 𝐸 = 12 𝑉 

From the given parameters, 

the circuit can be drawn as shown.
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Zener Diode – Numerical Example
Using KVL for the circuit,

𝐸 = 𝐼𝑍𝑅 + 𝑉𝑍

Hence, diode current            

𝐼𝑍 =
𝐸 − 𝑉𝑍

𝑅
 

 =
12 𝑉 − 4.3 𝑉

820 Ω
 

𝐼𝑍 = 9.39 𝑚𝐴 
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Zener Diode – Numerical Example
Power dissipation

𝑃𝐷 = 𝑉𝑍𝐼𝑍

 = 4.3 𝑉 × 9.39 𝑚𝐴

 𝑃𝐷 = 40.377 𝑚𝑊
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Voltage Regulator
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Voltage Regulator
• A voltage regulator is a circuit which accepts unregulated dc as input and 

provides a constant dc output voltage irrespective of changes in the line 
voltage and the load current.

• The output of a full wave rectifier with capacitor filter may be called 
unregulated dc since it varies with changes in load current and line 
voltage.

• Most of the electronic circuits require a stable dc voltage for their proper 
operation.

• Hence, it is necessary to regulate the output of full wave rectifier with 
filter.
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Voltage Regulator
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Zener Diode as a Voltage Regulator
• Since Zener diodes have a breakdown voltage that remains 

extremely stable over a wide range of current levels, they can be 
used as voltage regulators.

• The regulators can be with a load or without a load.
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Regulator with No Load
• Zener diode can be used as a 

voltage regulator as shown in 
the figure.

• This circuit does not have a load 
resistance and is normally used 
as a voltage reference source 
that supplies only a very low 
current (much lower than 𝐼𝑍) to 
the output.
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Regulator with No Load
• Resistor 𝑅1 limits the Zener 

diode current to the desired 
level.

• From the circuit,

𝐼𝑍 =
𝑉𝑖𝑛 − 𝑉𝑍

𝑅1
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Regulator with a Load (Loaded Regulator)
• In this circuit, a load resistor is 

connected in parallel with the 
Zener diode.

• The total supply current 
(flowing through 𝑅1) is the sum 
of Zener current 𝐼𝑍 and load 
current 𝐼𝐿.
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Regulator with a Load (Loaded Regulator)
• Care must be taken to ensure 

that the minimum Zener 
current is large enough to keep 
the diode in reverse breakdown.

• Typically, 𝐼𝑍(𝑚𝑖𝑛) = 5 𝑚𝐴 for a 

Zener diode with an 𝐼𝑍𝑇 of 
20 𝑚𝐴.
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Regulator with a Load (Loaded Regulator)
• Since load resistor 𝑅𝐿 and Zener diode are in parallel, the voltage 

across 𝑅𝐿 is equal to the voltage across Zener diode.

   i.e.,     𝑉𝑜 = 𝑉𝑍

• So 𝑉𝑜 remains constant even if 𝑉𝑖𝑛 happens to change due to the 
fluctuations in ac line voltage.

252

(1)



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Regulator with a Load (Loaded Regulator)
From the circuit,

𝐼𝑅 = 𝐼𝑍 + 𝐼𝐿

𝐼𝑍 = 𝐼𝑅 − 𝐼𝐿

Also, 

𝐼𝑅 =
𝑉𝑖𝑛 − 𝑉𝑜

𝑅1

Using Eqn. (4) in (3),

𝐼𝑍 =
𝑉𝑖𝑛 − 𝑉𝑜

𝑅1
− 𝐼𝐿
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Regulator with a Load (Loaded Regulator)
• Assume that 𝑉𝑖𝑛 varies between 𝑉𝑖𝑛(𝑚𝑖𝑛) and 𝑉𝑖𝑛(𝑚𝑎𝑥) and 𝐼𝐿 varies 

from 𝐼𝐿(𝑚𝑖𝑛) to 𝐼𝐿(𝑚𝑎𝑥).

• From Eqn. (5), we find that minimum Zener current flows when 
𝑉𝑖𝑛 = 𝑉𝑖𝑛(𝑚𝑖𝑛) and 𝐼𝐿 = 𝐼𝐿(𝑚𝑎𝑥).

• The current through the Zener diode must be more than 𝐼𝑍(𝑚𝑖𝑛), 
where 𝐼𝑍(𝑚𝑖𝑛) is the minimum Zener current required to operate in 
the breakdown region.

∴
𝑉𝑖𝑛(𝑚𝑖𝑛) − 𝑉𝑜

𝑅1
− 𝐼𝐿(𝑚𝑎𝑥) > 𝐼𝑍(𝑚𝑖𝑛)
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Regulator with a Load (Loaded Regulator)
• Also, maximum Zener current flows when 𝑉𝑖𝑛 = 𝑉𝑖𝑛(𝑚𝑎𝑥) and 

𝐼𝐿 = 𝐼𝐿(𝑚𝑖𝑛).

• The current through the Zener diode must be less than 𝐼𝑍(𝑚𝑎𝑥), 

where 𝐼𝑍(𝑚𝑎𝑥) is the maximum allowable Zener current for safe 

operation.

∴
𝑉𝑖𝑛(𝑚𝑎𝑥) − 𝑉𝑜

𝑅1
− 𝐼𝐿(𝑚𝑖𝑛) < 𝐼𝑍(𝑚𝑎𝑥)
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Voltage Regulator – Numerical Example 1
A Zener diode has a breakdown voltage of 10 V. It is supplied from a voltage 
source varying between 20−40 V in series with a resistance of 820 Ω. Using an 
ideal Zener model, obtain the minimum and maximum Zener currents. 

Solution:

Given 𝑉𝑍 = 10 𝑉

𝑉𝑖𝑛 = 20 − 40 𝑉 

That means,

𝑉𝑖𝑛(𝑚𝑖𝑛) = 20 𝑉 and 𝑉𝑖𝑛(𝑚𝑎𝑥) = 40 𝑉

𝑅1 = 820 Ω 
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Voltage Regulator – Numerical Example 1
Considering ideal Zener model,

𝐼𝑍(𝑚𝑖𝑛) = 0 𝑚𝐴 

For maximum value,

𝐼𝑍 =
𝑉𝑖𝑛 − 𝑉𝑍

𝑅1

𝐼𝑍(𝑚𝑎𝑥) =
𝑉𝑖𝑛(𝑚𝑎𝑥) − 𝑉𝑍

𝑅1

 =
40 𝑉 − 10 𝑉

820 𝑉

𝐼𝑍(𝑚𝑎𝑥) = 36.5855 𝑚𝐴
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Voltage Regulator – Numerical Example 2
For a Zener regulator shown in the figure, calculate the range of input voltage for 
which output will remain constant.

𝑉𝑍 = 6.1 𝑉, 𝐼𝑍𝑚𝑖𝑛 = 2.5 𝑚𝐴, 𝐼𝑍𝑚𝑎𝑥 = 25 𝑚𝐴, 𝑟𝑍 = 0 Ω.

Solution:

Given 𝑅1 = 2.2 𝑘Ω, 𝑅𝐿 = 1 𝑘Ω, 𝑉𝑜 = 𝑉𝑍= 6.1 𝑉
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Voltage Regulator – Numerical Example 2
The load current

𝐼𝐿 =
𝑉𝑜

𝑅𝐿

 =
6.1 𝑉

1 𝑘Ω

 𝐼𝐿 = 6.1 𝑚𝐴

From the circuit,

𝐼 = 𝐼𝑍 + 𝐼𝐿
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Voltage Regulator – Numerical Example 2
𝐼𝑚𝑖𝑛 = 𝐼𝑍𝑚𝑖𝑛 + 𝐼𝐿

 = 2.5 𝑚𝐴 + 6.1 𝑚𝐴

𝐼𝑚𝑖𝑛 = 8.6 𝑚𝐴 

And

𝐼𝑚𝑎𝑥 = 𝐼𝑍𝑚𝑎𝑥 + 𝐼𝐿

 = 25 𝑚𝐴 + 6.1 𝑚𝐴

𝐼𝑚𝑎𝑥 = 31. 1𝑚𝐴 
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Voltage Regulator – Numerical Example 2
Now,

𝑉𝑖𝑛 = 𝐼𝑅1 + 𝑉𝑍

Minimum value
𝑉𝑖𝑛(𝑚𝑖𝑛) = 𝐼𝑚𝑖𝑛𝑅1 + 𝑉𝑍

 = 8.6 𝑚𝐴 × 2.2 kΩ + 6.1 𝑉

 = 18.92 𝑉 + 6.1 𝑉

𝑉𝑖𝑛(𝑚𝑖𝑛) = 25.02 𝑉 
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Voltage Regulator – Numerical Example 2
Minimum value

𝑉𝑖𝑛(𝑚𝑎𝑥) = 𝐼𝑚𝑎𝑥𝑅1 + 𝑉𝑍

 = 31.1 𝑚𝐴 × 2.2 kΩ + 6.1 𝑉

 = 68.42 𝑉 + 6.1 𝑉

𝑉𝑖𝑛(𝑚𝑎𝑥) = 74.52 𝑉 

Hence the output will remain constant for the range of input voltage

25.02 𝑉 < 𝑉𝑖𝑛 < 74.52 𝑉
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Voltage Regulator – Numerical Example 3
For the circuit shown in the figure, find current and voltages in the circuit for 
RL = 450 Ω, VZ = 10 V.

Solution:

Given 𝑉𝑖𝑛 = 20 𝑉, 𝑉𝑍 = 10 𝑉

𝑅1 = 200 Ω, 𝑅𝐿 = 450 Ω
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Voltage Regulator – Numerical Example 3
The output voltage

𝑉𝑜 = 𝑉𝑍

 𝑉𝑜 = 10 𝑉

The voltage across 𝑅1

𝑉𝑅 = 𝑉𝑖𝑛 − 𝑉𝑍

 = 20 𝑉 − 10 𝑉

𝑉𝑅 = 10 𝑉 
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Voltage Regulator – Numerical Example 3
Current through 𝑅1

𝐼𝑅 =
𝑉𝑅

𝑅1

 =
10 𝑉

200 Ω

 𝐼𝑅 = 50 𝑚𝐴
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Voltage Regulator – Numerical Example 3
Load current

𝐼𝐿 =
𝑉𝑜

𝑅𝐿

 =
10 𝑉

450 Ω

 𝐼𝐿 = 22.22 𝑚𝐴

Zener current
𝐼𝑍 = 𝐼𝑅 − 𝐼𝐿

 = 50 𝑚𝐴 − 22.22 𝑚𝐴

 𝐼𝑍 = 27.78 𝑚𝐴
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Voltage Regulator – Numerical Example 4
A 9 V reference source is to use a series connected Zener diode and a resistor connected to 30 V 
supply. If Zener diode with VZ = 9 V, IZT = 20 mA is selected, then determine the value of series 
resistance and calculate the circuit current when the supply voltage drops to 27 V.

Solution:

Given 𝑉𝑖𝑛 = 30 𝑉, 𝑉𝑜 = 9 𝑉

𝑉𝑍 = 9 𝑉, 𝐼𝑍𝑇 = 20 𝑚𝐴

From the given parameters, 

the circuit can be drawn as shown.
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Voltage Regulator – Numerical Example 4
From the circuit,

𝑅1 =
𝑉𝑖𝑛 − 𝑉𝑍

𝐼𝑍

 =
30 𝑉 − 9 𝑉

20 𝑚𝐴

𝑅1 = 1.05 𝑘Ω
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Voltage Regulator – Numerical Example 4
Now if 𝑉𝑖𝑛 = 27 V,

𝐼𝑍 =
𝑉𝑖𝑛 − 𝑉𝑍

𝑅1

 =
27 𝑉 − 9 𝑉

1.05 𝑘Ω

𝐼𝑍 = 17.14 𝑚𝐴
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Voltage Regulator – Numerical Example 5
Design a 9 V DC reference source consisting of a Zener diode and series 
connected resistor to operate from a 24 V supply [IZT = IZ = 20 mA].

Solution:

Given 𝑉𝑖𝑛 = 24 𝑉, 𝑉𝑜 = 9 𝑉

𝐼𝑍𝑇 = 20 𝑚𝐴 

From the given parameters, 

the required circuit is as shown.
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Voltage Regulator – Numerical Example 5
Select a suitable Zener diode whose breakdown voltage

𝑉𝑍 = 𝑉𝑜 = 9𝑉

To find 𝑅1

𝑅1 =
𝑉𝑖𝑛 − 𝑉𝑍

𝐼𝑍

 =
24 𝑉 − 9 𝑉

20 𝑚𝐴

𝑅1 = 750 Ω 
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Voltage Regulator – Numerical Example 5
The designed circuit can be drawn as below:
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Voltage Regulator – Numerical Example 6
Design Zener voltage regulator for the following specifications:

Input Voltage = 10 𝑉 ± 20%, Output Voltage = 5 𝑉, 𝐼𝐿 = 20 𝑚𝐴, 𝐼𝑍(𝑚𝑖𝑛) =

5 𝑚𝐴 and 𝐼𝑍(𝑚𝑎𝑥) = 80 𝑚𝐴. 

Solution:

Given 𝑉𝑖𝑛 = 10 𝑉 ± 20%

20% 𝑜𝑓 10 𝑉 =
20

100
× 10 𝑉 = 2 𝑉 

Hence 𝑉𝑖𝑛(𝑚𝑖𝑛) = 10 𝑉 − 2 𝑉 = 8 𝑉

and 𝑉𝑖𝑛(𝑚𝑎𝑥) = 10 𝑉 + 2 𝑉 = 12 𝑉
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Also given 𝑉𝑜 = 5 𝑉

𝐼𝐿 = 20 𝑚𝐴. 

𝐼𝑍(𝑚𝑖𝑛) = 5 𝑚𝐴 

 𝐼𝑍(𝑚𝑎𝑥) = 80 𝑚𝐴 
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Voltage Regulator – Numerical Example 6
From the given parameters, the required circuit can be drawn as below:
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Voltage Regulator – Numerical Example 6
Select a suitable Zener diode whose breakdown voltage

𝑉𝑍 = 𝑉𝑜 = 5𝑉

To find 𝑅𝐿

𝑅𝐿 =
𝑉𝑜

𝐼𝐿

 =
5 𝑉

20 𝑚𝐴

 𝑅𝐿 = 250 Ω
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Voltage Regulator – Numerical Example 6
To find 𝑅1:

From the circuit, 𝐼𝑅 = 𝐼𝑍 + 𝐼𝐿

For maximum value of 𝑅1:

𝐼𝑍 will be 𝐼𝑍(𝑚𝑖𝑛) if 𝑉𝑖𝑛 = 𝑉𝑖𝑛(𝑚𝑖𝑛)

Then 

𝐼𝑅 = 𝐼𝑍(𝑚𝑖𝑛) + 𝐼𝐿

 = 5 𝑚𝐴 + 20 𝑚𝐴

𝐼𝑅 = 25 𝑚𝐴 

276



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Voltage Regulator – Numerical Example 6
Then 

𝑉𝑖𝑛(𝑚𝑖𝑛) = 𝐼𝑅𝑅1(𝑚𝑎𝑥) + 𝑉𝑍

𝑅1(𝑚𝑎𝑥) =
𝑉𝑖𝑛(𝑚𝑖𝑛) − 𝑉𝑍

𝐼𝑅
 

𝑅1(𝑚𝑎𝑥) =
8 𝑉 − 5 𝑉

25 𝑚𝐴

𝑅1(𝑚𝑎𝑥) = 120 Ω 
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Voltage Regulator – Numerical Example 6
For minimum value of 𝑅1:

𝐼𝑍 will be 𝐼𝑍(𝑚𝑎𝑥) if 𝑉𝑖𝑛 = 𝑉𝑖𝑛(𝑚𝑎𝑥)

Then 

𝐼𝑅 = 𝐼𝑍(𝑚𝑎𝑥) + 𝐼𝐿

 = 80 𝑚𝐴 + 20 𝑚𝐴

𝐼𝑅 = 100 𝑚𝐴 
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Voltage Regulator – Numerical Example 6
Then 

𝑉𝑖𝑛(𝑚𝑎𝑥) = 𝐼𝑅𝑅1(𝑚𝑖𝑛) + 𝑉𝑍

𝑅1(𝑚𝑖𝑛) =
𝑉𝑖𝑛(𝑚𝑎𝑥) − 𝑉𝑍

𝐼𝑅
 

𝑅1(𝑚𝑖𝑛) =
12 𝑉 − 5 𝑉

100 𝑚𝐴

𝑅1(𝑚𝑖𝑛) = 70 Ω 

Hence 
70 Ω < 𝑅1 < 120 Ω
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Voltage Regulator – Numerical Example 6
The designed circuit can be drawn as below:
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Voltage Regulator – Numerical Example 7
Design a Zener diode voltage regulator circuit to meet the following 
specifications:

IL = 20 mA, Vo = 5 V, PZ = 500 mW, Vi = 12 V ± 2 V and IZmin = 8 mA.

Solution:

Given 𝑉𝑖𝑛 = 12 𝑉 ± 2 𝑉

Hence 𝑉𝑖𝑛(𝑚𝑖𝑛) = 12 𝑉 − 2 𝑉 = 10 𝑉

and 𝑉𝑖𝑛(𝑚𝑎𝑥) = 12 𝑉 + 2 𝑉 = 14 𝑉
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Also given 𝑉𝑜 = 5 𝑉

𝐼𝐿 = 20 𝑚𝐴. 

𝐼𝑍(𝑚𝑖𝑛) = 8 𝑚𝐴 

𝑃𝑍 = 500 𝑚𝑊 
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Voltage Regulator – Numerical Example 7
𝑃𝑍 = 𝑉𝑍𝐼𝑍(𝑚𝑎𝑥)

𝐼𝑍(𝑚𝑎𝑥) =
𝑃𝑍

𝑉𝑍
 

 =
500 𝑚𝑊

5 𝑉

𝐼𝑍(𝑚𝑎𝑥) = 100 𝑚𝐴
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Voltage Regulator – Numerical Example 7
From the given parameters, the required circuit can be drawn as below:
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Voltage Regulator – Numerical Example 7
Select a suitable Zener diode whose breakdown voltage

𝑉𝑍 = 𝑉𝑜 = 5𝑉

To find 𝑅𝐿

𝑅𝐿 =
𝑉𝑜

𝐼𝐿

 =
5 𝑉

20 𝑚𝐴

 𝑅𝐿 = 250 Ω
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Voltage Regulator – Numerical Example 7
To find 𝑅1:

From the circuit, 𝐼𝑅 = 𝐼𝑍 + 𝐼𝐿

For maximum value of 𝑅1:

𝐼𝑍 will be 𝐼𝑍(𝑚𝑖𝑛) if 𝑉𝑖𝑛 = 𝑉𝑖𝑛(𝑚𝑖𝑛)

Then 

𝐼𝑅 = 𝐼𝑍(𝑚𝑖𝑛) + 𝐼𝐿

 = 8 𝑚𝐴 + 20 𝑚𝐴

𝐼𝑅 = 28 𝑚𝐴 
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Voltage Regulator – Numerical Example 7
Then 

𝑉𝑖𝑛(𝑚𝑖𝑛) = 𝐼𝑅𝑅1(𝑚𝑎𝑥) + 𝑉𝑍

𝑅1(𝑚𝑎𝑥) =
𝑉𝑖𝑛(𝑚𝑖𝑛) − 𝑉𝑍

𝐼𝑅
 

𝑅1(𝑚𝑎𝑥) =
10 𝑉 − 5 𝑉

28 𝑚𝐴

𝑅1(𝑚𝑎𝑥) = 178.57 Ω 
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Voltage Regulator – Numerical Example 7
For minimum value of 𝑅1:

𝐼𝑍 will be 𝐼𝑍(𝑚𝑎𝑥) if 𝑉𝑖𝑛 = 𝑉𝑖𝑛(𝑚𝑎𝑥)

Then 

𝐼𝑅 = 𝐼𝑍(𝑚𝑎𝑥) + 𝐼𝐿

 = 100 𝑚𝐴 + 20 𝑚𝐴

𝐼𝑅 = 120 𝑚𝐴 
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Then 

𝑉𝑖𝑛(𝑚𝑎𝑥) = 𝐼𝑅𝑅1(𝑚𝑖𝑛) + 𝑉𝑍

𝑅1(𝑚𝑖𝑛) =
𝑉𝑖𝑛(𝑚𝑎𝑥) − 𝑉𝑍

𝐼𝑅
 

𝑅1(𝑚𝑖𝑛) =
14 𝑉 − 5 𝑉

120 𝑚𝐴

𝑅1(𝑚𝑖𝑛) = 75 Ω 

Hence 
75 Ω < 𝑅1 < 178.57 Ω
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The designed circuit can be drawn as below:
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Source Effect and Line Regulation
• Source effect is defined as the change in the output voltage for 

10% change in the source voltage.

𝑆𝑜𝑢𝑟𝑐𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 = ∆𝑉𝑜 𝑓𝑜𝑟 𝑎 10% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑉𝑠 

• If this change is expressed aa a percentage of the output voltage, it 
is called line regulation.

𝐿𝑖𝑛𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
∆𝑉𝑜 𝑓𝑜𝑟 𝑎 10% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑉𝑠 × 100%

𝑉𝑜
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Load Effect and Load Regulation
• Load effect is defined as the change in the output voltage when the 

load current is increased from zero to its maximum level

𝐿𝑜𝑎𝑑 𝑒𝑓𝑓𝑒𝑐𝑡 = ∆𝑉𝑜 𝑓𝑜𝑟 ∆𝐼𝐿(𝑚𝑎𝑥)

• If this change is expressed aa a percentage of the output voltage, it 
is called load regulation.

𝐿𝑜𝑎𝑑 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
∆𝑉𝑜 𝑓𝑜𝑟 ∆𝐼𝐿(𝑚𝑎𝑥) × 100%

𝑉𝑜
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Regulator Performance
• The performance of a regulator can be expressed in terms of the 

source and load effects and line and load regulations.

• If there is an input ripple voltage, it will be severely attenuated.

• The ripple rejection ratio is the ratio of the output to input ripple 
amplitudes.

𝑅𝑅𝑅 =
𝑉𝑟𝑜

𝑉𝑟𝑖
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Regulator Performance
• The ac equivalent circuit is drawn by replacing 

the diode with its dynamic impedance 𝑍𝑍.

• Consider an equivalent circuit of a regulator with 
no load.

• When the input voltage changes by ∆𝑉𝑖𝑛, the 
change in the output voltage is 

∆𝑉𝑜 =
∆𝑉𝑖𝑛 × 𝑍𝑍

𝑅1 + 𝑍𝑍
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Regulator Performance
• Consider an equivalent circuit of a regulator with a 

load.

• When the input voltage changes by ∆𝑉𝑖𝑛, the change 
in the output voltage is 

∆𝑉𝑜 =
∆𝑉𝑖𝑛 × (𝑍𝑍||𝑅𝐿)

𝑅1 + (𝑍𝑍||𝑅𝐿)
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Regulator Performance
• The ripple rejection ratio can be calculated by substituting input 

ripple amplitude 𝑉𝑟𝑖 for input voltage change and output ripple 
amplitude 𝑉𝑟0 for output voltage change.

• For a regulator without load,

𝑅𝑅𝑅 =
𝑉𝑟𝑜

𝑉𝑟𝑖
=

𝑍𝑍

𝑅1 + 𝑍𝑍

• For a loaded regulator,

𝑅𝑅𝑅 =
𝑉𝑟𝑜

𝑉𝑟𝑖
=

(𝑍𝑍||𝑅𝐿)

𝑅1 + (𝑍𝑍||𝑅𝐿)
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Regulator Performance
• To calculate the load effect of the regulator, the 

circuit output resistance has to be calculated.

• From the Thevenin equivalent circuit, assuming a 
zero source resistance, the circuit output 
resistance is 

𝑅𝑜 = 𝑍𝑍||𝑅1

• When the load current changes by ∆𝐼𝐿, the 
output voltage change is

∆𝑉𝑜= ∆𝐼𝐿 × (𝑍𝑍||𝑅1)
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