# Question Bank for Introduction to Electronics and Communication (BESCK104C/204C)

### Module – 1 Power Supplies

1. What is a regulated power supply? With neat block diagram, explain the working of DC power supply. Also mention the principal components used in each block.

(Jul '23 – 8M, MQP '22 – 6M)

- With a neat block diagram, explain the working of a DC power supply. Also mention the principal components used in each block. (Nov '23 7M, Aug '22 7M, MQP '21 7M)
- 3. Describe the DC power supply with the help of block diagram. (Nov '23 8M, Jul '23 7M)
- 4. Draw the block diagram of DC power supply and explain the individual blocks.

(Feb '23 – 8M)

- 5. What is a rectifier? What are the different types of rectifiers?
- 6. Describe half-wave rectifier with circuit diagram and waveforms. (Jul '23 8M)
- 7. With appropriate circuit diagram, explain the working of half-wave rectifier. (Nov '23 8M)
- 8. A mains transformer having a turns ratio of 44: 1 is connected to a 220 V r.m.s. mains supply. If the secondary output is applied to a half-wave rectifier, determine the peak voltage that will appear across a load. (Nov '23 4M)
- 9. What is the need for reservoir and smoothing circuits? Explain.
- 10. Explain the working of a half-wave rectifier with reservoir capacitor along with relevant waveforms.
- 11. The R-C smoothing filter in a 50 Hz mains operated half-wave rectifier circuit consists of  $R_1 = 100 \ \Omega$  and  $C_1 = 1,000 \ \mu$ F. If 1 V of ripple appears at the input of the circuit, determine the amount of ripple appearing at the output.
- 12. A half-wave rectifier is fitted with an R-C smoothing filter comprising  $R = 200 \Omega$  and  $C = 50 \mu$ F. If 2 V of 400 Hz ripple appear at the input of the circuit, determine the amount of ripple appearing at the output.
- 13. Explain the working of bi-phase full wave rectifier circuit with neat diagram and waveforms.
   (Aug '22 7M, MQP '21 8M)
- 14. With appropriate circuit diagram, explain the working of full-wave rectifier. Draw the input and output waveforms. *(Nov '23 12M)*
- 15. Explain full wave rectifier with necessary circuit diagrams and waveforms. (Jul '23 8M)
- 16. With a neat circuit diagram, explain the working of a bi-phase rectifier along with relevant waveforms. Also explain how the output changes when a reservoir capacitor is used.
- 17. With neat circuit diagram and waveforms explain the working of a full wave bridge rectifier. (Jul '23 8M, Feb '23 8M, MQP '21 8M)

- 18. With a neat circuit diagram and waveforms, explain the working of bridge rectifier without filter. (Feb '22 8M)
- 19. With a neat circuit diagram and waveform, explain the working of bridge rectifier with filter.
   (Nov '23 8M)
- 20. With a neat circuit diagram, explain the working of a bridge rectifier along with relevant waveforms. Also explain how the output changes when a reservoir capacitor is used.
- 21. Discuss the need of filter circuit. With circuit diagram and waveforms, brief out the operation of smoothing filter for full wave rectifiers. (MQP '22 7M)
- 22. What is voltage regulator? With neat circuit diagram, explain the operation of a voltage regulator using Zener diode. *(Jul '23 7M)*
- 23. Draw the circuit diagram of voltage regulation and explain the operation. (Feb '23 6M)
- 24. Explain the operation of a simple shunt Zener voltage regulator. (MQP '21 7M)
- 25. A 5 V zener diode has a maximum rated power dissipation of 500 mW. If the diode is to be used in a simple regulator circuit to supply a regulated 5 V to a load having a resistance of 400  $\Omega$ , determine a suitable value of series resistor for operation in conjunction with a supply of 9 V. (MQP '22 7M)
- 26. A 6 V zener diode has a maximum rated power dissipation of 500 mW. If the diode is to be used in a simple regulator circuit to supply a regulated 6 V to a load of 500 Ω, determine a suitable value of series resistor for a supply of 12 V. (Nov '23 5M, Feb '22 6M)
- 27. If a 9 V zener diode is to be used in a simple shunt regulator circuit to supply a load having a nominal resistance of  $300 \Omega$ , determine the maximum value of series resistor for operation in conjunction with a supply of 15 V.
- 28. Explain the terms output resistance and voltage regulation with respect to voltage regulator.
- 29. The following data were obtained during a test carried out on a d.c. power supply:

(i) Load test

Output voltage (no-load) = 12 V

Output voltage (2 A load current) = 11.5 V

(ii) Regulation test

Output voltage (mains input, 220 V) = 12 V

Output voltage (mains input, 200 V) = 11.9 V

Determine (a) the equivalent output resistance of the power supply and (b) the regulation of the power supply.

30. The following data were obtained during a load test carried out on a d.c. power supply:

Output voltage (no-load) = 8.5 V

Output voltage (800 mA load) = 8.1 V

Determine the output resistance of the power supply and estimate the output voltage at a load current of 400 mA.

31. The following data were obtained during a regulation test on a d.c. power supply:

Output voltage (a.c. input: 230 V) = 15 V

Output voltage (a.c. input: 190 V) = 14.6 V

Determine the regulation of the power supply and estimate the output voltage when the input voltage is 245 V.

- 32. What is voltage multiplier? With circuit diagram, explain the operation of voltage doubler. *(Jul '23 6M)*
- 33. With circuit diagram explain the following: Voltage Doubler, Voltage Tripler

(MQP '21 - 5M)

- 34. Draw the circuit diagram of voltage doubler and the working operation. (Feb '23 6M)
- 35. What is voltage multiplier and mention its applications? With circuit diagram brief out the operation of voltage tripler circuit. (MQP '22 7M)

### Amplifiers

| 1. | What is an amplifier? Explain the types of amplifier. | (Jul '23 – 4M) |
|----|-------------------------------------------------------|----------------|
| 2. | List and describe the main types of amplifiers.       | (MQP '21 – 7M) |
| 3. | Classify different types of amplifier.                | (Jul '23 – 8M) |

- 4. With neat block diagram of an amplifier showing the input and output current and voltages provide the formula for voltage gain, current and power gain. (*Nov '23 4M*)
- 5. Explain the following terms related to amplifier:

(a) Gain (b) Input resistance (c) Output resistance

6. Define the following with respect to amplifier:

| (i) Input resistance (ii) Amplifier gain (iii) Bandwidth (iv) Phase shift | (Nov '23 – 8M) |
|---------------------------------------------------------------------------|----------------|
|---------------------------------------------------------------------------|----------------|

- 7. Describe the terms: Gain, Input resistance, Bandwidth of amplifier. (Jul '23 5M)
- 8. An amplifier produces an output voltage of 2 V for an input of 50 mV. If the input and output currents in this condition are, respectively, 4 mA and 200 mA, determine: (a) the voltage gain (b) the current gain (c) the power gain.
   (Jul '23 4M, Feb '23 6M)
- 9. An amplifier produces an output voltage of 5 V for an input of 100 mV. If the input and output currents in this condition are 4 mA and 200 mA, find voltage, current and power gains.

(Nov '23 – 4M)

- 10. The following measurements were made during a test on an amplifier:  $V_{in} = 250 \text{ mV}$ ,  $I_{in} = 2.5 \text{ mA}$ ,  $V_{out} = 10 \text{ V}$ ,  $I_{out} = 400 \text{ mA}$ Determine: (a) the voltage gain (b) the current gain (c) the power gain (d) the input resistance.
- 11. An amplifier has a power gain of 25 and identical input and output resistances of 600  $\Omega$ . Determine the input voltage required to produce an output of 10 V.

- 12. Write a note on frequency response characteristics of an amplifier circuit, clearly mentioning the half power frequencies. (MQP '21 6M)
- 13. Mention the advantages of negative feedback in amplifiers circuits. With relevant equations and diagram, explain the concept of negative feedback.

(Jul '23 - 7M, Aug '22 - 7M, MQP '21 - 7M)

- 14. Discuss briefly a negative feedback amplifier with block diagram. (Feb '23 6M)
- 15. With a neat block diagram, derive the expression for overall gain of a negative feedback amplifier. *(Nov '23 6M, Feb '22 6M)*
- 16. Explain the concept of negative feedback with a neat diagram. Show how negative feedback stabilizes the overall gain of an amplifier.
- 17. An amplifier with negative feedback applied has an open-loop voltage gain of 50, and onetenth of its output is fed back to the input (i.e.  $\beta = 0.1$ ). Determine the overall voltage gain with negative feedback applied. If the amplifier's open-loop voltage gain increases by 20%, determine the percentage increase in overall voltage gain.
- 18. An amplifier with negative feedback applied has an open-loop voltage gain of 250, and 5% of its output is fed back to the input. Determine the overall voltage gain with negative feedback applied. If the open-loop voltage gain increases by 20% determine the new value of overall voltage gain.
- 19. An integrated circuit that produces an open-loop gain of 100 is to be used as the basis of an amplifier stage having a precise voltage gain of 20. Determine the amount of feedback required.
- 20. An amplifier produces an open-loop gain of 180. Determine the amount of feedback required if it is to be operated with a precise voltage gain of 50.
- 21. What are multi-stage amplifiers? Write different methods used for interstage coupling.

(Nov '23 - 6M)

### Module – 2 Oscillators

- 1. What is an oscillator?
- 2. Explain the concept of positive feedback with a neat diagram. Show how positive feedback increases the overall gain of an amplifier.
- 3. An amplifier with a gain of 8 has 10% of its output fed back to the input. Determine the gain of the stage (a) with negative feedback (b) with positive feedback.
- 4. What is oscillator? And mention the conditions for oscillation. (Feb '23 6M)
- 5. Explain the Barkhausens' criteria for oscillations.
- Explain the operation of three-stage ladder RC network oscillator with neat circuit diagram.
   (Jul '23 6M)
- 7. List and explain the conditions for sustained oscillations. Determine the frequency of oscillation of a three-stage ladder network in which C = 10 nF and R = 10 k $\Omega$ .

#### (Nov '23 – 6M, Jul '23 – 4M, MQP '22 – 6M, Aug '22 – 6M, MQP '21 – 6M)

- 8. A phase-shift oscillator is to operate with an output at 1 kHz. If the oscillator is based on a three-stage ladder network, determine the required values of resistance if three capacitors of 10 nF are to be used.
- 9. With circuit diagram, explain the operation of a Wien bridge oscillator.

(Nov '23 – 8M, Feb '23 – 8M)

- 10. With a neat circuit diagram, explain the working of Wien bridge oscillator using op-amp. *(Feb '22 6M)*
- Describe Wien bridge oscillator with circuit diagram and formula for frequency of oscillations. (Jul '23 7M)
- 12. Explain the Barkhausen criteria for oscillations. In a Wien bridge oscillator, if  $C_1 = C_2 = 100 \text{ nF}$ , determine the frequency of oscillations when  $R_1 = R_2 = 1 \text{ k}\Omega$ . (Jul '23 7M)
- 13. In a Wien bridge oscillator based on an operational amplifier, if  $C_1 = C_2 = 100 \text{ nF}$ , determine the output frequencies when (a)  $R_1 = R_2 = 1 \text{ k}\Omega$  and (b)  $R_1 = R_2 = 6 \text{ k}\Omega$ .
- 14. In a Wien bridge oscillator based on an operational amplifier,  $C_1 = C_2 = 22$  nF. Determine the values of  $R_1$  and  $R_2$  required to produce an output at exactly 400 Hz.
- 15. What are multivibrators? Mention the different types of it. (Nov '23 8M)
- 16. With suitable circuit diagram, explain single stage astable multivibrator using operational amplifier. (Nov '23 7M, MQP '22 7M, Aug '22 7M)
- 17. Explain the operation of single stage astable multivibrator with its circuit diagram.

(Jul '23 – 7M)

18. Explain the operation of single stage astable Oscillator with its circuit diagram.

(Feb '23 – 8M, MQP '22 – 7M)

- 19. Describe the working of a single stage astable oscillator using an op-amp. (MQP '21 5M)
- 20. With a neat circuit diagram and waveforms, describe the operation of crystal controlled oscillator. (Nov '23 7M, MQP '22 7M)
- 21. Write a note on crystal controlled oscillators.(Nov '23 4M)

#### **Operational Amplifiers**

- 1. What is an operational amplifier? Sketch the circuit symbol for an operational amplifier. Label each of the connections.
- 2. What is op-amp? Explain the various parameters of operational amplifier. (Jul '23 7M)
- 3. Explain the following parameters of an op-amp: (a) Open-loop voltage gain (b) Closed-loop voltage gain (c) Input resistance (d) Output resistance
- 4. Explain the following operational amplifier parameters:
  (i) Open-loop voltage gain (ii) Closed-loop voltage gain (iii) Input offset voltage
  (iv) Slew rate (Nov '23 16M)
- 5. Explain the following terms with reference to operational amplifiers:

(i) Open-loop voltage gain (ii) Input resistance (iii) Input offset voltage (iv) Slew rate *[Jul '23 – 8M]* 

- 6. Define the following operational amplifiers parameters and write their typical values:
  i) Open loop voltage gain ii) Output resistance iii) Slew rate (Feb '23 6M)
- 7. Define the following with respect to operational amplifiers and write their typical values:
  i) Open loop voltage gain ii) Input offset voltage iii) Full power bandwidth and
  iv) Slew rate (Nov '23 8M, Feb '22 8M)
- 8. During measurements on an operational amplifier under open-loop conditions, an output voltage of 12 V is produced by an input voltage of 1 mV. Determine the open-loop voltage gain expressed in dB.
- 9. An operational amplifier operating with negative feedback produces an output voltage of 2 V when supplied with an input of 400  $\mu$ V. Determine the value of closed-loop voltage gain.
- 10. An operational amplifier with negative feedback applied produces an output of 1.5 V when an input of 7.5 mV is present. Determine the closed-loop voltage gain.
- 11. An operational amplifier has an input resistance of 2 M $\Omega$ . Determine the input current when an input voltage of 5 mV is present.
- 12. Explain the following parameters of an op-amp: (a) Input offset voltage (b) Full-power bandwidth (c) Slew rate
- 13. With the aid of a sketch, explain what is meant by the term 'slew rate'. Why is this important?
- 14. A perfect rectangular pulse is applied to the input of an operational amplifier. If it takes 4  $\mu$ s for the output voltage to change from –5 V to +5 V, determine the slew rate of the device.
- 15. A wideband operational amplifier has a slew rate of 15 V/ $\mu$ s. If the amplifier is used in a circuit with a voltage gain of 20 and a perfect step input of 100 mV is applied to its input, determine the time taken for the output to change level.
- 16. Explain the ideal characteristics of an op-amp.(Jul '23 6M)
- 17. Write a note on ideal characteristics of an operational amplifier.

(Nov '23 - 5M, MQP '22 - 7M)

- 18. What are characteristics of an ideal operational amplifier? (Jul '23 6M)
- 19. List and explain the ideal and real characteristics of op-amp.
- 20. Describe three basic configurations for operational amplifiers. (Jul '23 8M)
- 21. Explain how capacitors can be added to modify the frequency response of op-amps.
- 22. An inverting operational amplifier is to operate according to the following specification:

Voltage gain = 100

Input resistance (at mid-band) =  $10 \text{ k}\Omega$ 

Lower cut-off frequency = 250 Hz

Upper cut-off frequency = 15 kHz

- 23. With a neat circuit diagram and waveforms, explain the following op-amp circuits: (a) Voltage follower (b) Differentiator (c) Integrator (d) Comparator (e) Summing amplifier
- 24. Write a note on voltage follower using operational amplifier. (Nov '23 4M)
- 25. Sketch the circuits of each of the following based on use of op-amp along with input and output waveforms:
  - (i) Integrator (ii) Voltage follower (iii) Comparator (Jul '23 7M)
- 26. Draw the circuit diagram and input and output waveform of the following operational amplifier circuits (i) Differentiator (ii) Integrator (Feb '23 6M)
- 27. Sketch the circuits of each of the following based on use of Operational Amplifier (a) Differentiator (b) Integrator (c) Voltage follower (Nov '23 7M, MQP '22 6M)
- 28. Sketch the circuit of each of the following based on the use of operational amplifiers(a) comparator (b) a differentiator (c) an integrator (d) Inverting Amplifier.

(Aug '22 – 6M, MQP '21 – 8M)

- 29. With a neat circuit diagram, explain the working of integrator using op-amp. (Feb '22 6M)
- 30. Explain a differentiator circuit with waveforms and circuit diagrams. (Jul '23 7M)
- 31. With circuit diagram and waveform show how operational amplifier can work as a comparator. (MQP '21 6M)
- 32. Explain the operation of summing amplifier using operational amplifier and write the output equation. (Feb '23 6M)
- 33. An inverting amplifier is to be constructed having a mid-band voltage gain of 40, an input resistance of 5 k $\Omega$  and a frequency response extending from 20 Hz to 20 kHz. Devise a circuit and specify all component values required.
- 34. A summing amplifier with two inputs has  $R_F = 10 \text{ k}\Omega$ , and  $R_{IN}$  (for both inputs) of 2 k $\Omega$ . Determine the output voltage when one input is at -2 V and the other is +0.5 V.

# Module – 3 Boolean Algebra and Logic Circuits

- Convert the following binary numbers to decimal: (Nov '23 12M) (i) 101110 (ii) 1110101.11 (iii) 110110100
   Convert the following: (Jul '23 - 8M) i. (1AD. E0)<sub>16</sub> = (?)<sub>10</sub> ii. (37.625)<sub>10</sub> = (?)<sub>2</sub> iii. (110100111001.110)<sub>2</sub> = (?)<sub>8</sub> iv. (345. AB)<sub>16</sub> = (?)<sub>2</sub>
- 3. Convert the following: i.  $(2AB.8)_{16} = (?)_{10}$ ii.  $(416.12)_{10} = (?)_8$ iii.  $(25.375)_{10} = (?)_2$ iv.  $(16.2)_8 = (?)_{16}$

(Jul'23 - 6M)

| 4.  | Convert the following numbers to its equivalent numbers and show the step                                                                                                                                                  |                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|     | i) $(10110001101011.111100000)_2 = (?)_8$<br>ii) $(10110001101011.11110010)_2 = (?)_{16}$<br>iii) $(1010.011)_2 = (?)_{10}$                                                                                                | (Feb '23 – 6M)              |
| 5.  | Convert Decimal to Binary: (i) 41 (ii)153 (iii)) 0.6875 (iv) 0.513                                                                                                                                                         | (MQP '22 – 8M)              |
| 6.  | Convert Binary to Decimal: (i) 110111 (ii) 10101010 (iii) 0110 (iv) 100.10                                                                                                                                                 | 10<br><b>(MQP '22 - 8M)</b> |
| 7.  | Convert the following:<br>i. $(110.1101)_2 = (?)_{10}$<br>ii. $(847.951)_{10} = (?)_8$<br>iii. $(CAD. BF)_{16} = (?)_{10}$                                                                                                 | (MQP '22 - 6M)              |
| 8.  | Convert the following:<br>i. $(225)_{10} = (?)_2 = (?)_8 = (?)_{16}$<br>ii. $(11010111)_2 = (?)_{10} = (?)_8 = (?)_{16}$<br>iii. $(623)_8 = (?)_{10} = (?)_2 = (?)_{16}$<br>iv. $(2AC5)_{16} = (?)_{10} = (?)_8 = (?)_2$   |                             |
| 9.  | Convert the following:<br>a) $(306. D)_{16} = (?)_2$<br>b) $(41)_{10} = (?)_2$<br>c) Compute 1's complement of $(11101)_2$<br>d) Compute 9's complement of $(0.3267)_{10}$                                                 | (Nov '23 - 8M)              |
| 10. | Convert the following:<br>a) $3A6.C58D_{(16)} = ?_{(8)}$<br>b) $0.6875_{(10)} = ?_{(2)}$<br>c) Compute the 9's complement of $25.639_{(10)}$<br>d) Compute the 1's complement of $11101.0110_{(2)}$                        | (MQP '22 - 8M)              |
| 11. | <ul> <li>i) Subtract using 10's complement method<br/>M=72532, N=03250</li> <li>ii) Subtract using 2's complement method<br/>M = 1010100, N = 1000100</li> </ul>                                                           | (Nov '23 - 6M)              |
| 12. | Perform the following operations:<br>i) 1101 – 0101 using 2's complement method<br>ii) 0110 – 0010 using 2's complement method<br>iii) 924 – 126 using 9's complement method<br>iv) 265 – 424 using 10's complement method | (Jul '23 - 8M)              |
| 13. | Perform the following:<br>i) $(1010100)_2 - (1000100)_2$ using 1's complement and 2's complement methil<br>ii) $(4456)_{10} - (34234)_{10}$ using 9's complement and 10's complement meth                                  |                             |
| 14. | Subtract the following using 10's complement:                                                                                                                                                                              | (Feb '23 – 6M)              |

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

(MQP'22 - 6M)

i)  $(72532 - 3250)_{10}$ ii)  $(3250 - 72532)_{10}$ 

- 15. Subtract using (r 1)'s complement method a)  $4456_{(10)} - 34234_{(10)}$ Subtract using r's complement method a)  $1010100_{(2)} - 1000100_{(2)}$
- 16. Perform subtraction on the given numbers using 9's complement method:(a) 4,637 2,579 (b) 125 1,800
- 17. Perform subtraction on the given numbers using 10's complement method:(a) 2,043 4,361 (b) 1,631 745
- 18. Perform subtraction on the given binary numbers using 1's complement method:(a) 10011 10010 (b) 100010 100110
- 19. Perform subtraction on the given binary numbers using 2's complement method:(a) 1001 110101 (b) 101000 10101
- 20. Write down axiomatic definition of Boolean algebra.(MQP '22 6M)
- Mention the different theorems and postulates of Boolean algebra and prove each of them with truth table. (MQP '22 7M)
   Mention any 3 theorems of Boolean algebra and prove each of them. (Nov '23 6M)
- 23. Mention the postulates and theorems of Boolean algebra. (Jul '23 8M)
- 24. State and prove De Morgan's theorem with its truth table.
- (Nov '23 7M, Jul '23 6M, MQP '22 5M)25. Using basic Boolean theorems, prove i) (x + y)(x + z) = x + yzii)  $xy + xz + y\overline{z} = xz + y\overline{z}$ 26. Simplify the Boolean function to minimum number of literals: (xy + x'y + yz) (x'y + x(y + z) + y'z')27. Simplify the following: i) x(x' + y)ii) xy + x'z + yz(Nov '23 - 6M)
- 28. Simplify the following Boolean functions to minimum number of literals:
  - iii) x + x'yiv) x(x' + y)v) x'y'z + x'yz + xy'vi) xy + x'z + yzvii) (x + y)(x' + z)(y + z)
- 29. Simplify the following expressions using Boolean Algebra:

i.  $\overline{A}BC + AB\overline{C} + AB$ ii. A + BC + B (Jul'23 - 7M)

| Question Bunk II                                                                                                                                                                      | ntroduction to Electronics and Communication                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 30. Simplify the following:<br>i. $Y = AB + \overline{A}C + BC$<br>ii. $Y = (A + \overline{B} + \overline{B})(A + \overline{B} + C)$<br>iii. $Y = C(B + C)(A + B + C)$                | (MQP '22 – 6M)                                               |
| <ul> <li>31. Find the complement of the functions</li> <li>i) F<sub>1</sub> = x'yz' + x'y'z</li> <li>ii) F<sub>2</sub> = x(y'z' + yz)</li> <li>using De Morgan's theorem.</li> </ul>  | (Jul '23 – 8M)                                               |
| 32. Minimize the following function<br>a) $F(x, y, z) = xy + x'z + yz$<br>Find the complement of the function F1 and F2<br>F1(x, y, z) = x'yz' + x'y'z<br>F2(x, y, z) = x(y'z' + yz') | (MQP '22 – 7M)                                               |
| 33. Express the Boolean function                                                                                                                                                      |                                                              |
| i) $F = A + \overline{B}C$ in a sum of minterms form<br>ii) $F = xy + \overline{x}z$ in a product of maxterms form                                                                    | (Feb '23 – 8M)                                               |
| 34. Express the Boolean function $F = A + \overline{B}C$ in a sum of                                                                                                                  | minterms form. (Jul '23 – 6M)                                |
| 35. Express the Boolean function $F = A + B'C$ in a sum of                                                                                                                            | f minterms. (Jul '23 – 6M)                                   |
| 36. Express the Boolean function $F = A + BC$ in a sum of                                                                                                                             | minterms. (MQP '22 – 6M)                                     |
| 37. Express the Boolean function $F = xy + x'z$ in a produ                                                                                                                            | ct of maxterms.                                              |
| 38. Express the Boolean function $F = xy + \overline{x}z$ in a produced of $\overline{x}$                                                                                             | uct of maxterms form.<br><i>(Jul '23 – 6M, MQP '22 – 6M)</i> |
| 39. Explain SOP & POS with examples.                                                                                                                                                  | (MQP '22 – 6M)                                               |
| 40. What are logic gates? Write the graphic symbol, alge logic gates.                                                                                                                 | ebraic function and truth table of all 8<br>(Nov '23 - 20M)  |
| 41. Describe how NAND and NOR gates can be used as un                                                                                                                                 | niversal gates. (MQP '22 – 8M)                               |
| 42. Implement the following Boolean functions by using<br>(i) $F_1 = xy' + x'z$ (ii) $F_2 = x'y'z + x'yz + xy'$                                                                       | logic gates: (Jul '23 – 6M)                                  |
| Combinational Logic                                                                                                                                                                   |                                                              |
| 1. Write the step-by-step procedure to design a combination                                                                                                                           | ational circuit. <i>(Feb '23 – 6M)</i>                       |
| 2. Implement half adder using basic gates.                                                                                                                                            | (MQP '22 – 6M)                                               |
| 3. Explain the working of half adder.                                                                                                                                                 | (Jul '23 – 6M)                                               |
| 4. Design a half adder with necessary logic diagram and                                                                                                                               | l expressions. (Jul '23 – 5M)                                |
| 5. With the help of truth table, explain the operatio expressions, along with its circuit diagram.                                                                                    | on of full adder with sum and carry<br>(Nov '23 – 7M)        |
| 6. With the help of truth table explain the operation of                                                                                                                              | full adder with its circuit diagram and                      |

6. With the help of truth table explain the operation of full adder with its circuit diagram and reduce the expression for sum and carry. (MQP '22 - 7M)

| 7. Describe the working of the full adder using basic gates.                                                                             | (MQP '22 – 8M)                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| 8. Explain the working of full adder.                                                                                                    | (Jul '23 – 6M)                               |  |
| <ol> <li>With the help of truth table, explain full adder using logic gates.</li> <li>(Aug '22 - 6M, Feb '22 - 8N)</li> </ol>            | M, MQP '21 – 5M)                             |  |
| 10. Implement full adder circuit with its truth table and write the expressions f                                                        | for sum and carry.<br><i>(Jul '23 – 6M)</i>  |  |
| 11. Implement full adder using two half adders and one OR gate. Write the e and C <sub>out</sub> .                                       | equations for Sum<br>(Feb '23 – 8M)          |  |
| 12. Design a full adder circuit using two half adders.                                                                                   | (Jul '23 – 8M)                               |  |
| 13. Design a full adder using two half adders and an OR-gate.                                                                            | (MQP '21 – 8M)                               |  |
| Module – 4                                                                                                                               |                                              |  |
| Embedded Systems                                                                                                                         |                                              |  |
| <ol> <li>What is an embedded system? Compare embedded systems and general co<br/>(Jul '23 - 7)</li> </ol>                                | omputer systems.<br><b>'M, Feb '23 – 8M)</b> |  |
| 2. What is an embedded system? List any 7 comparisons between embed general purpose computing system.                                    | dded system and<br>(Feb '22 – 8M)            |  |
| 3. Compare embedded systems and general computing systems. Also provide areas of Embedded Systems.(MQP '22 - 5M, Aug '22 - 8M)           |                                              |  |
| <ul> <li>4. Differentiate between a general purpose computing system and embedded system.</li> <li>(Nov '23 - 12M)</li> </ul>            |                                              |  |
| 5. Compare embedded system and general computing system (Any 5).                                                                         | (Nov '23 – 6M)                               |  |
| <ul> <li>6. Write a note on classification of embedded systems. Also provide applications of embedded systems. (Nov '23 – 8M)</li> </ul> |                                              |  |
| 7. Explain the classification of embedded system.                                                                                        | (Jul '23 – 6M)                               |  |
| <ol> <li>Write a note on classification of embedded systems.</li> <li>(MQP '22 – 6M, Aug '22 – 6M)</li> </ol>                            | M, MQP '21 – 6M)                             |  |
| 9. Mention the classification of embedded systems based on complexity and p                                                              | oerformance.<br><b>(Feb '23 – 6M)</b>        |  |
| 10. Explain the classification of embedded system based on generation.                                                                   | (Feb '22 – 6M)                               |  |
| 11. Explain major application areas of embedded systems.                                                                                 | (Jul '23 – 5M)                               |  |
| 12. Discuss major application areas of embedded systems with examples.                                                                   | (Jul '23 – 6M)                               |  |
| 13. What is an embedded system and brief about the different elements of an embedded system.<br>(MQP '22 – 8M)                           |                                              |  |
| 14. Explain elements of an embedded system with the help of a block diagram.                                                             | (Jul '23 – 8M)                               |  |
| 15. Discuss the typical embedded system elements.                                                                                        | (Feb '23 – 8M)                               |  |

Introduction to Electronics and Communication

Question Bank

| 16. Write a note on core of an embedded system with its block diagram.<br>(Jul '23 – 7M, MQP '22 – 8M)                                     |                               |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|
| 17. Compare microprocessors and microcontro                                                                                                | 2                             |                                        |
| 18. Bring out the differences between RISC and CISC, Harvard & Von-Neumann.<br>(Aug '22 – 6M, MQP '21 – 6M)                                |                               |                                        |
| 19. Compare RISC and CISC processors.                                                                                                      | (Nov '23 - 6M, Jul '23 -      | 6M, Feb '23 – 6M)                      |
| 20. With a neat block diagram, explain an instru                                                                                           | imentation system.            | (Feb '22 – 8M)                         |
| 21. Using suitable diagrams, explain instrumentation and control systems.<br>(Nov '23 – 8M, Jul '23 – 7M)                                  |                               |                                        |
| 22. Write a note on transducers. Explain one type of sensor and actuator with its operation. <i>(MQP '22 – 7M)</i>                         |                               |                                        |
| 23. Give the classification of transducers with e                                                                                          | xamples.                      | (MQP '21 – 6M)                         |
| 24. Write a short note on: (i) Transducers (ii) So                                                                                         | ensors.                       | (Feb '23 – 6M)                         |
| 25. Define 'sensors' and give its classification w                                                                                         | ith examples.                 | (MQP '21 – 6M)                         |
| 26. Write a short note on:<br>(i) Sensors (ii) Actuators (iii) 7-segment LEI                                                               | D display                     | (Nov '23 - 6M)                         |
| 27. Explain the operation of an LED with neat diagram. Mention its applications.                                                           |                               |                                        |
| 28. Explain the working of a 7-segment LED wit                                                                                             | h necessary diagrams.         | (Jul '23 – 8M)                         |
| 29. Write a short note on 7-segment LED displa                                                                                             | у.                            | (Feb '23 – 6M)                         |
| 30. Explain how 7-segment display can be used to display the data and write a brief note on operation of LED. (Jul '23 – 7M, MQP '22 – 7M) |                               |                                        |
| 31. Write a note on 7-segment display. Write th                                                                                            | e two configurations in 7-seg | ment display.<br><b>(Nov '23 – 8M)</b> |
| 32. With a neat circuit diagram, explain Commo<br>display.                                                                                 | on Cathode and Common And     | ode 7-segment LED<br>(Feb '22 – 6M)    |
| 33. Explain the different configurations of 7-seg                                                                                          |                               | 6M, MQP '21 – 6M)                      |

# Module – 5

# **Analog and Digital Communication**

- Draw the block diagram of basic communication system and briefly explain the individual blocks. (Feb '23 10M)
- With a neat block diagram of a basic communication system, explain modern communication system scheme. (Nov '23 12M)
- 3. Brief about modern communication system with its block diagram.

(Nov '23 - 8M, MQP '22 - 7M)

(Iul'23 - 8M)

(Jul '23 - 8M)

- 4. Describe the blocks of modern communication system with neat block diagram.
- 5. Describe communication system with the help of a block diagram.
- 6. Describe the blocks of the basic communication system.

```
(Aug '22 – 6M, Feb '22 – 8M, MQP '21 – 6M)
```

Define the following terms: (i) Modulation (ii) Carrier communication system (iii) Baseband communication system with neat and suitable waveforms. (MQP '21 - 6M)

8. Explain the types of communication system. (Feb '23 – 5M, Feb '22 – 6M)

Describe the classification of RF (Radio Frequency) spectrum with applications in communications systems. (MQP '21 - 8M)

10. Define noise. Derive the expression for Signal to Noise Ratio (SNR) in decibels (dB).

(Jul '23 - 7M)

11. Define and explain SNR, Noise Figure, channel types, amplitude modulation.

(MQP '21 - 8M)

12. Write a note on different types of modulation and briefly describe each in detail.

```
(Nov '23 - 7M, MQP '22 - 8M)
```

- 13. Define Amplitude Modulation. Explain amplitude modulation (AM) with necessary waveforms. (Nov '23 8M, Jul '23 7M, Feb '22 6M)
- 14. What is modulation? Explain amplitude modulation (AM) and frequency modulation (FM) with neat diagrams. *(Jul '23 8M)*
- 15. Define amplitude and frequency modulation. Sketch AM and FM waveforms. (Feb '23 10M)
- 16. Write a note on: (i) Amplitude Modulation (ii) Frequency Modulation (iii) Phase Modulation
- 17. List out the advantages of digital communication over analog communication.

#### (Nov '23 – 6M, Jul '23 – 6M, 5M, Feb '23 – 5M, MQP '22 – 5M)

- 18. Write a note on digital modulation techniques.
- 19. Explain the following with the help of waveforms: (i) ASK (ii) FSK (iii) PSK (Jul '23 6M)
- 20. Consider the following binary data 1100101 and sketch the ASK, FSK & PSK modulated waveforms. (Nov '23 6M)
- 21. Consider the following binary data and sketch the ASK, FSK & PSK modulated waveforms.

(MQP '22 - 6M)



22. Write a short note on Amplitude Shift Keying (ASK) modulator and demodulator.

(Feb '23 – 10M)

23. Explain with a neat diagram, the concept of radio wave propagation and its different types. (Nov '23 – 6M, Jul '23 – 7M, MQP '22 – 7M)

| 24. With a neat diagram, explain the 3 different modes of propawaves).                                                                                          | agation of the waves (Radio<br><i>(Nov '23 – 12M)</i> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 25. What are the different types of radio wave propagation? Descri                                                                                              | be each type in detail.<br><b>(Jul '23 - 8M)</b>      |
| 26. Explain different types of radio wave propagation with a neat diagram.<br>(Aug '22 – 6M, MQP '21 – 6M)                                                      |                                                       |
| 27. Explain three different modes of propagation of electromagnetic waves, with a neat diagram. <i>(Feb '22 – 8M)</i>                                           |                                                       |
| 28. Present the architecture of a wireless communication transmitter and its modulation scheme<br>QPSK with waveforms and constellation diagrams.(MQP '21 - 6M) |                                                       |
| 29. Describe about radio signal transmission and multiple access techniques.                                                                                    |                                                       |
| (1                                                                                                                                                              | Nov '23 – 7M, MQP '22 – 7M)                           |
| 30. Write a note on multiple access techniques.                                                                                                                 | (Nov '23 – 8M)                                        |
| 31. Explain different multiple access techniques.                                                                                                               | (Jul '23 – 5M)                                        |
| 32. Discuss the various multiple access techniques used in cellular network.<br>(Aug '22 – 6M, MQP '21 – 6M)                                                    |                                                       |

33. Discuss various multiple access techniques used in communication systems.

(Jul '23 – 5M)