

Bhatkal, Karnataka, India

INTRODUCTION TO ELECTRONICS ENGINEERING

(BESCK104C/BESCK204C)

Mr. Shrishail Bhat

Assistant Professor Department of Electronics and Communication Engineering

Module 5 ANALOG & DIGITAL COMMUNICATION

AL ["---

SYLLABUS

Analog Communication Schemes

Modern Communication System Scheme, Information Source and Input Transducer, Transmitter, Channel or Medium – Hardwired and Softwired, Noise, Receiver, Multiplexing, Types of Communication Systems.

Types of Modulation (only concepts) – AM, FM.

Concept of Radio Wave Propagation (Ground, Space, Sky).

Digital Modulation Schemes

Advantages of digital communication over analog communication, ASK, FSK, PSK. Radio Signal Transmission

Multiple Access Techniques

Text Book

NEW AGE REFERENCE

Communication Systems

S L Kakani and Priyanka Punglia New Age International Publisher 2017

Introduction

What is Communication?

- Communication is the science and practice of transmitting information.
- Communication Engineering deals with the techniques of transmitting information.
- In brief, Communication Engineering means *Electrical Communication*, in which information is transmitted through electrical signals.

What is Communication? (continued)

• *Electrical Communication* is a process by which the information/message is transmitted from one point to another, from one person to another, or from one place to another in the form of electrical signals, through some communication link.

Modern Communication System Scheme

Modern Communication System Scheme

- A basic communication system provides a link between the information source and its destination.
- The process of electrical communication involves sending, receiving, and processing information in electrical form.
- The information to be transmitted passes through a number of stages of the communication system before it reaches its destination.
- Fig. 1.1 shows a block schematic diagram of the most general form of basic communication system.

Modern Communication System Scheme (continued)

Fig. 1.1 Schematic block diagram of a basic communication system in most general form

Modern Communication System Scheme (continued)

- The main constituents of basic communication system are:
 - i. Information source and input transducer
 - ii. Transmitter
 - iii. Channel or medium
 - iv. Noise
 - v. Receiver

vi. Output transducer and final destination.

Information Source and Input Transducer

- A communication system transmits information from an information source to a destination.
 - Hence the first stage of a communication system is the *information source*.
- A communication system transmits information in the form of electrical signals.
 - If the information produced by the source is not in an electrical form, one will have to use a transducer to convert the information into electrical form.

- A transducer is a device that converts a non-electrical energy into its corresponding electrical energy called signal and vice versa.
 - An example of a transducer is a microphone.
 - Microphone converts sound signals into the corresponding electrical signals.
 - Similarly, a television (TV) picture tube converts electrical signals into its corresponding pictures.
 - Some other examples of transducers are movie cameras, Video Cassette Recorder (VCR) heads, tape recorder heads, and loudspeakers.

- The information produced by the information source is applied to the next stage, termed the *information or input transducer*.
- This in turn, produces an electrical signal corresponding to the information as output.
 - This electrical signal is called the *baseband signal*.
 - It is also called a message signal, an information signal, an intelligent signal, or an envelope.
- In the communication theory, the baseband signal is usually designated by s(t).

- There are two types of signals:
 - a) Analog signal
 - b) Digital signal

a) Analog signal

- An analog signal is a function of time, and has a continuous range of values.
 - However, there is a definite function value of the analog signal at each point of time.
- Examples: a pure sine wave form, a voice signal.

Fig. 1.2 Analog signals: (*a*) Pure sine wave, (*b*) Typical speech signal

b) Digital signal

- A digital signal does not have continuous function values on a time scale.
- It is discrete in nature, i.e., it has some values at discrete timings.
- In between two consecutive values, the signal values is either zero, or different value.
- Example: the sound signal produced by drumbeats.

Fig. 1.3 Digital signal

- Digital signals correspond to a binary digital signal, where the discrete amplitude of the signal is coded into binary digits represented by '0' and '1'.
- The analog signal is converted to digital using Analog-to-Digital Converters (ADC).
 - ADC involves *Sampling* and *Quantization*.
 - Sampling converts analog time to discrete time
 - Quantization converts analog amplitude to discrete amplitude

Transmitter

- The transmitter is a collection of electronic components and circuits that converts the electrical signal into a signal suitable for transmission over a given medium.
- Transmitters are made up of oscillators, amplifiers, tuned circuits and filters, modulators, frequency mixers, frequency synthesizers and other circuits.

- The base band signal, which is the output of an input transducer, is input to the transmitter.
- The transmitter section processes the signal prior to transmission.
 - The nature of processing depends on the type of communication system.
- There are two options for processing signals prior to transmission:
 - Carrier communication system
 - The baseband signal, which lies in the low frequency spectrum, is translated to a higher frequency spectrum.
 - Baseband communication system
 - The baseband signal is transmitted without translating it to a higher frequency spectrum.

- In *baseband communication system*, baseband signal is transmitted without translating it to a higher frequency spectrum.
- However, some processing of the signal is required prior to its transmission.
 - e.g. a train of pulses that are to be transmitted can be replaced by a series of two sine waves of different frequencies prior to transmission.
 - One of these two frequencies represent a low and the other represents a high value of the digital pulse.
 - Therefore, the baseband signal is converted into a corresponding series of sine waves of two different frequencies prior to transmission.
- Fig. 1.4 illustrates this processing.

- In *carrier communication system*, the baseband signal is carried by a higher frequency signal, called the *carrier signal*.
- The carrier communication system is based on the principle of translating a low frequency baseband signal to higher frequency spectrum.
 - This process is termed as *modulation*.
- Now, if the baseband signal is a digital signal, the carrier communication system is called a digital communication system.
 - The digital modulation methods are employed for this.
- If the baseband signal is an analog signal, the carrier communication system is called as an analog communication system.
 - The analog modulation techniques are used for processing this.

Fig. 1.5 Block diagram representing schematic of an analog transmitter section

- Figure 1.5 shows the *baseband signal*, s(t) applied to the modulated stage.
- This stage translates the baseband signal from its low frequency spectrum to high frequency spectrum.
- This stage also receives another input called the *carrier signal*, c(t), which is generated by a high frequency carrier oscillator.
- Modulation takes place at this stage with the baseband and the carrier signals as two inputs after modulation, the baseband signal is translated to a high frequency spectrum and the carrier signal is said to be modulated by the baseband signal.
- The output of the modulated stage is called the *modulated signal*, and is designated as x(t).

- Radio signals are transmitted through electromagnetic (EM) waves, also referred as radio waves, in a radio communication system.
- The radio waves have a wide frequency range starting from a few ten kilo Hertz (Hz) to several thousand Mega Hertz (MHz).
 - This wide range of frequencies is referred as the radio frequency (RF) spectrum.
- The RF spectrum is classified according to the applications of the spectrum in different service areas .
- Table 1.1 shows the classification of the RF spectrum along with the associated applications in communication systems.

Electromagnetic Spectrum

Radio Frequency Spectrum

Table 1.1: Classification of radio frequency (RF) spectrum alongwith the associated applications in communication systems.

Radio frequency range	Wavelength (meters)	Class	Applications
10–30 kHz	$3\times 10^4-10^4$	Very Low Frequency (VLF)	Point-to-point communication (long distance)
30–300 kHz	$10^4 - 10^3$	Low Frequency (LF)	Point-to-point communication (long distance) and navigation
300–3000 kHz	$10^3 - 10^2$	Medium Frequency (MF)	Radio broadcasting
3–30 MHz	$10^2 - 10$	High Frequency (HF)	Overseas radio broadcasting,
			Point-to-point radio telegraphy, and telephony
30–300 MHz	10 - 1.0	Very High Frequency (VHF)	FM broadcast, television, and radar
300–3000 MHz	1.0 - 0.1	Ultra High Frequency (UHF)	Television and navigation
3000–30,000 MHz	0.1 - 0.01	Super High Frequency (SHF)	Radar navigation and radio relays

Channel or Medium

- The transmission medium between the transmitter and the receiver is called a *channel*.
- The channel is a very important part of a communication system.
- Its characteristics add many constraints to the design of the communication system.
- The transmitted signal should have adequate power to withstand the channel *noise*.
- The channel characteristics also impose constraints on the *bandwidth*.
- The channel characteristics are also taken into consideration as a *design parameter* while designing the transmitter and receiver.

- Depending on the physical implementations, channels are classified into two groups:
 - Hardwired channels
 - Softwired channels

Hardwired Channels (Hardware channels)

- These are manmade structures which can be used as transmission medium.
- There is always a physical link between the transmitter and receiver in hardware channels.
- A communication system that makes use of a hardware channel is called as a line communication system.
 - e.g. landline telephony and cable TV network.
- There are following three possible implementations of the hardware channels:
 - Transmission lines
 - Waveguides
 - Optical Fiber Cables (OFC)

- Transmission Lines
 - e.g. Twisted-pair cables used in landline telephony and coaxial cables used for cable TV transmission.
- Waveguides
 - They are hollow, circular, or rectangular metallic structures.
 - The signals enter the waveguide, are reflected at the metallic walls, and propagate towards the other end of the waveguide.
 - Waveguides are employed as medium to transmit signals at UHF range
- Optical Fiber Cables (OFC)
 - They are highly sophisticated transmission media, in the form of extremely thin circular pipes.
 - Signals are transmitted in the form of light energy in optical fiber cables.

Softwired Channels (Software channels)

- There are certain natural resources which can be used as the transmission medium for signals.
- Such transmission media are called software channels.
 - e.g. air or open space and sea water.
- There is no physical link between the transmitter and the receiver.
- The signals are transmitted in the form of *electromagnetic (EM)* waves, also called *radio waves*.

- Radio waves travel through open space at a speed equal to that of light $(c = 3 \times 10^8 m s^{-1})$.
- The transmitter section converts the electrical signal into EM waves or radiation by using a transmitting antenna.
 - These waves are radiated into the open space by the transmitting antenna.
- At the receiver side, the receiving antenna picks up these radio waves and converts them into corresponding electrical signals.
- Systems that use radio waves to transmit signals through open space are called *radio communication systems*.
 - e.g. radio broad cast, television transmission, satellite communication, and cellular mobile communication.

Noise

- Noise is defined as unwanted electrical energy of random and unpredictable nature present in the system due to any cause.
- Noise is an electrical disturbance, which does not contain any useful information.
- Thus, noise is a highly undesirable part of a communication system, and have to be minimized.
- When noise is mixed with the transmitted signal, it rides over it and deteriorates its waveform.
 - This results in the alteration of the original information so that wrong information is received.
- External noise or extraneous noise
 - The noise introduced by the transmission medium
- Internal noise
 - The thermal agitation of atoms and electrons of electronic components used in the equipment

Signal to Noise Ratio (SNR)

- SNR is the ratio of the signal power to the noise power.
- It is the measure of the signal power delivered to the noise power at a particular point in the circuit.
- If P_s is the signal power and P_n is the noise power, then SNR is given as

$$\frac{S}{N} = \frac{P_s}{P_n}$$

• If
$$P_s = V_s^2/R$$
 and $P_n = V_n^2/R$, then

$$\frac{S}{N} = \frac{V_s^2 R}{V_n^2 R}$$

$$\frac{S}{N} = \frac{V_s^2}{V_n^2}$$

where V_s is signal voltage and V_n is noise voltage

• SNR can be expressed in terms of decibels (dB) as

$$\left(\frac{S}{N}\right)_{dB} = 10 \log_{10} \left(\frac{V_s^2}{V_n^2}\right)$$
$$\left(\frac{S}{N}\right)_{dB} = 10 \log_{10} \left(\frac{V_s}{V_n}\right)^2$$
$$\left(\frac{S}{N}\right)_{dB} = 20 \log_{10} \left(\frac{V_s}{V_n}\right)$$

Example:

If, at a particular point in a circuit, the signal and noise voltages are given as 3.5 mV and 0.75 mV respectively, calculate SNR in dB.

Solution:

• Given,
$$V_s = 3.5 \ mV$$
 and $V_n = 0.75 \ mV$

SNR in dB is given by

$$\left(\frac{S}{N}\right)_{dB} = 20\log_{10}\left(\frac{V_s}{V_n}\right)$$

$$\left(\frac{S}{N}\right)_{dB} = 20 \log_{10} \left(\frac{V_S}{V_n}\right)$$
$$\left(\frac{S}{N}\right)_{dB} = 20 \log_{10} \left(\frac{3.5}{0.75}\right)$$
$$\left(\frac{S}{N}\right)_{dB} = 20 \log_{10}(4.67)$$

That is

 $SNR = 13.38 \, dB$

Noise Figure (F)

- The noise figure is defined as ratio of the signal-to-noise power at the input of the circuit and the signal-to-noise power at the output of the circuit.
- The noise figure (F) is the measure of the noise introduced by the circuit and can be expressed as

$$F = \frac{\frac{S}{N}Power at the input terminals of the circuit}{\frac{S}{N}Power at the output terminals of the circuit}$$

• We can see that if F is unity, the noise power introduced by the circuit is zero, as both the input and output S/N powers are the same.

Receiver

- A receiver is a collection of electronic components and circuits that accepts the transmitted message from the channel and converts it back into its original form.
- The task of the receiver is to provide the original information to the user.
- This information is altered due to the processing at the transmitter side.
- The receiver system receives the transmitted signal and performs some processing on it to recover the original baseband signal.

Receiver (continued)

- The signal received by the receiver is r(t), which contains both the transmitted signal x(t), and the noise n(t), added to it during transmission.
- The function of the receiver section is to separate the noise from the received signal, and then recover the original baseband signal by performing some processing on it.
- The detailed block diagram of a typical receiver section is shown in Fig. 1.7.

Receiver (continued)

Fig. 1.7 Detailed block diagram of a typical receiver section

Receiver (continued)

- The received signal, r(t), is first amplified by the front-end voltage amplifier.
 - This is done to strengthen the received signal, which is weak and to facilitate easy processing.
- Next, this signal is given to the demodulator, which in turn, demodulates the received signal to recover the original baseband signal.
 - Demodulation is the process which brings the baseband signal from the higher frequency spectrum to its original low-frequency spectrum.
 - The type of demodulation is based on the type of modulation employed at the transmitter.
- After recovering the original baseband signal, its voltage and power is amplified prior to sending it to final destination block.

Multiplexing

- *Multiplexing* is a technique which allows more than one signal to be transmitted through a single channel.
- Multiplexing facilitates the simultaneous transmission of multiple messages over a single transmission channel.
- Multiplexing allows the maximum possible utilization of the available bandwidth of the system.
- The use of multiplexing also makes the communication system economical because more than one signal can be transmitted through a single channel.
- Multiplexing is possible in communication system only through *modulation*.

Multiplexing (continued)

Multiplexing (continued)

- Each signal is translated to a different frequency spectrum, such that every signal differs in its transmitted frequency.
 - This is done through modulation.
- At the transmitter they can be mixed and transmitted.
- At the receiver, the different signals can be easily separated because they are at different frequencies, and these can be delivered to the next stages of the receiver for further processing.

Types of Communication Systems

- Communication systems can be categorised based on their *physical infrastructure* and the *specifications of the signals they transmit*.
 - The physical infrastructure pertains to the type of the channel used and the hardware design of the transmitting and receiving equipment.
 - The signal specifications signify the nature and type of the transmitted signal.

Communication Systems based on Physical Infrastructure

- There are two types of communication systems based on the physical infrastructure:
 - i. Line Communication System
 - There is a physical link, called the hardware channel, between the transmitter and the receiver.
 - e.g. landline telephony
 - ii. Radio communication system
 - There is no physical link between the transmitter and the receiver and natural resources, such as space and water are used as softwire channels.
 - e.g. radio broadcast

- There are two types of communication systems based on one-way or two-way transmission feature:
 - i. Simplex Communication System
 - The single can be transmitted only in one direction (one-way transmission).
 - e.g. TV transmission
 - ii. Duplex communication system
 - Signals can be sent and received from a point. (two-way transmission)
 - Half-duplex two-way transmission is carried out, but not simultaneously
 - Full-duplex two-way transmission is carried out simultaneously
 - e.g. telephony

Communication Systems based on Signal Specifications

- There are two types of communication systems based on the nature of *baseband* signal:
 - i. Analog Communication System
 - e.g. TV transmission
 - ii. Digital communication system
 - e.g. HDTV, Internet

- There are two types of communication systems based on the nature of *transmitted* signal:
 - i. Baseband Communication System
 - e.g. landline telephony, fax
 - ii.Carrier communication system
 - e.g. TV transmission, radio broadcast, cable TV

Modulation

What is Modulation?

- Modulation is a process in which some characteristic or property of a high frequency signal called carrier signal is varied in accordance with the instantaneous amplitude of the message signal.
- The carrier signal is a sinusoidal signal that can be represented as

$$v_c(t) = V_c \sin(\omega_c t + \theta)$$

- The characteristic of the carrier wave that is modified may be amplitude V_c , frequency f_c or phase angle θ .
- Accordingly, we have three types of modulation:
 - Amplitude Modulation
 - Frequency Modulation
 - Phase Modulation

Need for Modulation

- Improves Quality of reception
- Reduces Height of antenna
- Allows Multiplexing
- Extends the Bandwidth
- Increases Range of Communication
- Reduces noise and interference

Amplitude Modulation

- Amplitude Modulation (AM) is a modulation technique in which the instantaneous amplitude of the carrier signal is varied in accordance with the instantaneous amplitude of the analog modulating signal to be transmitted.
- The modulating signal is an analog baseband signal which is random and has a low frequency, while the carrier signal is always a sinusoidal wave with high frequency.
- The variations in amplitude of carrier signal represent the information carried.

Amplitude Modulation (continued)

Fig. 2.1 Waveforms related to amplitude modulation

- The amplitude of the carrier wave is varied in accordance with the modulating signal while the frequency and phase of the carrier signal remains unchanged.
- The modulating signal seems to be superimposed on the carrier signal.
- The amplitude variations in the peak values of the carrier signal exactly replicate the modulating signal at different points of time which is known as an *envelope*.
- Modulation Index is given by $\mu = A_m / A_c$

Amplitude Modulation (continued)

Frequency Modulation

- Frequency Modulation (FM) is a modulation technique in which the frequency of the carrier signal is varied in accordance with the instantaneous amplitude of the analog modulating signal to be transmitted.
- Only the frequency of the carrier signal is varied while the amplitude and phase of the carrier are kept constant.
- The original frequency of the carrier signal is called the centre or resting frequency and denoted as f_c.
- The amount by which the frequency of the carrier wave changes or shifts above or below the resting frequency is called frequency deviation Δf . This means $\Delta f \propto m(t)$.

Frequency Modulation (continued)

 The total variation of frequency of FM wave from the lowest to highest is termed as carrier swing (CS),

$$CS = 2 \Delta f$$

Modulation Index

$$\mu_f = \frac{Frequency \ deviation}{Modulating \ frequency} = \frac{\Delta f}{f_m}$$

Amplitude and Frequency Modulation

Phase Modulation

- *Phase Modulation (PM)* is a modulation technique in which the phase of the carrier signal is varied in accordance with the instantaneous amplitude of the analog modulating signal to be transmitted.
- After phase modulation, amplitude and frequency of the carrier signal remain unaltered.
- The modulating signal is mapped to the carrier signal in the form of variations in the instantaneous phase of the carrier signal.
- Phase modulation and frequency modulation are closely related to each other.
 - In both the cases, the total phase angle ϕ of the modulated signal varies.

Phase Modulation (continued)

Digital Modulation Schemes

- In digital communications, the modulating signal consists of binary data or M-ary version of it.
- When it is required to transmit digital signals, the amplitude, frequency or phase of the sinusoidal carrier is varied in accordance with the incoming digital data.
- Since, the digital data is in discrete steps, the modulation of the bandpass sinusoidal carrier is also done in discrete steps.
 - Due to this reason, this type of modulation is known as *digital modulation*.

Digital Modulation Schemes (continued)

- Digital modulation schemes are classified as
 - Amplitude Shift Keying (ASK)
 - Frequency Shift Keying (FSK)
 - Phase Shift Keying (PSK)

Amplitude Shift Keying

- Amplitude Shift Keying (ASK) represents digital data as variations in the amplitude of a carrier wave.
- ASK signal may be generated by simply applying the incoming binary data and the sinusoidal carrier to the two inputs of a product modulator.

Amplitude Shift Keying (continued)

Amplitude Shift Keying (continued)

Frequency Shift Keying

- In *Frequency Shift Keying (FSK),* the digital information is transmitted through discrete frequency changes of a carrier signal.
- The simplest FSK is binary FSK (BFSK).
- BFSK uses a pair of discrete frequencies to transmit binary information (0s and 1s).

Frequency Shift Keying (continued)

Frequency Shift Keying (continued)

Phase Shift Keying

- *Phase Shift Keying (PSK)* conveys data by changing (modulating) the phase of constant frequency carrier.
- Each symbol (pattern of bits) is represented by a particular phase.
- The simplest form of PSK is Binary PSK (BPSK).
 - It uses phases 0° and 180°.
- It is widely used for wireless LANs, RFID and Bluetooth Communication.

Phase Shift Keying (continued)

Phase Shift Keying (continued)

Why FSK and PSK are preferred over ASK?

- Because of the constant amplitude of FSK or PSK, the effect of nonlinearities, noise and interference is minimum on signal detection.
- These effects are more pronounced in ASK.

Advantages of digital communication over analog communication

- Reduced noise
- Improved signal quality
- Greater efficiency
- More reliable
- Ease of storage and manipulation
- Improved security
- Lower cost
- Greater flexibility

Radio Wave Propagation

Radio Wave Propagation

- Based on the nature of the communication channel, the communication can be broadly classified the into following three categories:
 - a) Line communication,
 - b) Optical communication and
 - c) Space communication
- In *space communication,* electromagnetic waves of different frequencies are used to carry information through the physical space acting as the transmission medium.
- Electromagnetic waves with frequencies extending from about 10 kHz to 300 GHz are classified as *radio waves*.

Radio Wave Propagation (continued)

- Depending on the frequency, a radio wave travels from the transmitting to the receiving antenna in several ways.
- On the basis of the mode of propagation, radio waves can be broadly classified as:
 - i. ground or surface wave
 - ii. space or tropospheric wave

iii. sky wave

• Accordingly, we have three types of propagation.

Radio Wave Propagation (continued)

Fig. 1.28

Ground Wave Propagation

- Radio waves are guided by the earth and move along its curved surface from the transmitter to the receiver.
 - They are strongly influenced by the electrical properties of the ground.
- This is useful only at low frequencies as high frequency waves are strongly absorbed by ground.
- Below 500 kHz, ground waves can be used for communication within distances of about 1500 km from the transmitter.
- AM radio broadcast in the medium frequency band cover local areas and take place primarily by the ground wave.
- Ground wave transmission is very reliable whatever the atmospheric conditions be.

Space or Tropospheric Wave Propagation

- Radio wave transmitted from an antenna, travels in a straight line and directly reaches the receiving antenna.
- In space wave or line of sight propagation, radio waves move in the earth's troposphere within about 15 km over the surface of the earth.
- The space wave is made up of two components:
 a) a direct or line-of- sight wave from the transmitting to the receiving antenna
 - b) the ground-reflected wave traversing form the transmitting antenna to ground and reflected to the receiving antenna
- Television frequencies in the range 100-220 MHz are transmitted through this mode.

Sky Wave Propagation

- Radio waves transmitted from the transmitting antenna reach the receiving antenna after reflection from the ionosphere, i.e. the ionized layers lying in the earth's upper atmosphere.
- Short wave transmission around the globe is possible through sky wave via successive reflections at the ionosphere and the earth's surface.
- Ionosphere The ionized region of the earth's upper atmosphere extending from about 40 km to the height of a few earth radii above the earth.
 - The ionosphere is made up of electrons, and positive and negative ions in the background of neutral particles of the atmosphere.
- The propagation of radio wave through the ionosphere is affected by the electrons and ions in the ionosphere.
 - The effect of the electrons on the propagation is much greater than that of the ions since the electronic mass is much less than the ionic mass.

Radio Signal Transmission

Radio Signal Transmission

• Figure 6A.1 shows the most important components of a wireless transmission system.

Fig. 6A.1 Architecture of a wireless communication transmitter

- The transmitter accepts a stream of bits from the application software.
- It then encodes these bits onto a radio wave, known as a carrier, by adjusting parameters of the wave such as its amplitude or phase.
- The transmitter usually processes the information in two stages.
 - Modulator accepts the incoming bits, and computes symbols that represent the amplitude and phase of the outgoing wave.
 - Analogue transmitter generates the radio wave

- The modulation scheme used in Fig. 6A.1 is known as *Quadrature Phase Shift Keying (QPSK)*.
- A QPSK modulator takes the incoming bits two at a time and transmits them using a radio wave that can have four different states.
- These have phases of 45°, 135°, 225° and 315°, which correspond to bit combinations of 00, 10, 11 and 01 respectively.
- We can represent the four states of QPSK using the constellation diagram shown in Fig. 6A.2b.

Fig. 6A.2 Quadrature phase shift keying. (a) Example QPSK waveform. (b) QPSK constellation diagram

- In constellation diagram, the distance of each state from the origin represents the amplitude of the transmitted wave, while the angle (measured anti-clockwise from the x-axis) represents its phase.
- Usually, each symbol is represented using two other numbers, which are known as the in-phase (I) and quadrature (Q) components:

 $I = a \, \cos \phi$ $Q = a \sin \phi$

where a is the amplitude of the transmitted wave and ϕ is its phase.

• The in-phase and quadrature components are the real and imaginary parts of a complex number respectively.

- LTE (Long Term Evolution) uses four modulation schemes altogether.
 - Binary Phase Shift Keying (BPSK) − sends bits one at a time, using two states that can be interpreted as starting phases of 0° and 180°, or as signal amplitudes of +1 and −1.
 - Quadrature Phase Shift Keying (QPSK) sends bits two at a time, using four states that can be interpreted as phases of 45°, 135°, 225° and 315° which correspond to bit combinations of 00, 10, 11 and 01 respectively.
 - 16-Quadrature Amplitude Modulation (16-QAM) sends bits four at a time, using 16 states that have different amplitudes and phases.
 - 64-Quadrature Amplitude Modulation (64-QAM) sends bits six at a time using 64 different states, so it has a data rate six times greater than that of BPSK.

Fig. 6A.3 Modulation schemes used by LTE

Multiple Access Techniques

Multiple Access Techniques

- In a cellular network, a base station has to transmit to many different mobiles at once.
- This is done by sharing the resources of the air interface using a technique known as *multiple access*.
- Mobile communication systems use different multiple access techniques:
 - Frequency Division Multiple Access (FDMA)
 - Time Division Multiple Access (TDMA)
 - Code Division Multiple Access (CDMA)

Frequency Division Multiple Access (FDMA)

- Each mobile receives signal on its own carrier frequency, which it distinguishes from the others using analogue filters.
- The carriers are separated by unused guard bands to minimize the interference between them.

Time Division Multiple Access (TDMA)

 Mobiles receive signals on the same carrier frequency, but at different times.

Code Division Multiple Access (CDMA)

 Mobiles receive signals on the same carrier frequency and at the same time, but the signals are labelled by the use of codes, which allow a mobile to separate its own signal from those of the others.

FDMA, TDMA & CDMA

Multiple Access Techniques (continued)

- FDMA was used by the first generation analogue systems.
- GSM uses a mix of FDMA and TDMA, in which every cell has several carrier frequencies that are each shared amongst eight different mobiles.
- LTE uses another mixed technique known as Orthogonal Frequency Division Multiple Access (OFDMA).
- CDMA is used by the third generation communication systems.
- LTE uses a few of the concepts from CDMA for some of its control signals, but does not implement the technique otherwise.

Multiplexing vs. Multiple Access

- Multiple access is actually a generalization of a simpler technique known as *multiplexing*.
- A multiple access system can dynamically change the allocation of resources to different mobiles, whereas in a multiplexing system the resource allocation is fixed.

FDD and TDD Modes

- By using the various multiple access techniques, a base station can distinguish the transmissions to and from the individual mobiles in the cell.
- To distinguish the mobiles' transmissions from those of the base stations, a mobile communication system can operate in different transmission modes:
 - Frequency Division Duplex (FDD) the base station and mobile transmit and receive at the same time, but using different carrier frequencies.
 - **Time Division Duplex (TDD)** the base station and mobile transmit and receive on the same carrier frequency but at different times.

FDD and TDD Modes (continued)

Fig. 6A.7 Operation of FDD and TDD modes

FDD and TDD Modes (continued)

- In FDD mode,
 - the bandwidths of the uplink and downlink are fixed and are usually the same
 - suitable for voice communications, in which the uplink and downlink data rates are very similar.
- In TDD mode,
 - the system can adjust how much time is allocated to the uplink and downlink
 - suitable for applications such as web browsing, in which the downlink data rate can be much greater than the rate on the uplink.