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Assembler Language: Basic Syntax

* In assembler code, the following instruction formatting is
commonly used:

label
opcode operandl, operandZ2, ...; Comments

* The label is optional.

* Some of the instructions might have a label in front of them so

that the address of the instructions can be determined using the
label.

* Then, you will find the opcode (the instruction) followed by a
number of operands.
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Assembler Language: Basic Syntax
(continued)

* Normally, the first operand is the destination of the operation.

* The number of operands in an instruction depends on the type of
instruction, and the syntax format of the operand can also be

different.
* For example, immediate data are usually in the form #number, as
shown here:

MOV RO, #0x12 : Set RO = 0x12 (hexadecimal)
MOV R1, #'A" : Set R1 = ASCII character A

* The text after each semicolon (;) is a comment.

* These comments do not affect the program operation, but they can
make programs easier for humans to understand.
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Assembler Language: Basic Syntax
(continued)

* Constants can be defined using EQU directive, and then they can be
used in the program.

NVIC_IRQ_SETENO EQU OxEOOOE100
NVIC_IRQO_ENABLE EQU Ox1

Lbﬁ RO,=NVIC_IRQ_SETENO; ; LDR here is a pseudo-instruction that
: convert to a PC relative load by

: assembler.
MOV R1,#NVIC_IRQO_ENABLE ; Move immediate data to register
STR R1,[RO] : Enable IRQ O by writing R1 to address

: in RO
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Assembler Language: Basic Syntax
(continued)

* DCB (Define Constant Byte) can be used for byte size constant values, such as
characters, and Define Constant Data (DCD) for word size constant values to

define binary data.
LDR R3,=MY_NUMBER ; Get the memory address value of MY_NUMBER

LDR R4,[R3] : Get the value code 0x12345678 in R4
LDR RO,=HELLO_TXT ; Get the starting memory address of
- HELLO_TXT
BL PrintText .- Call a function called PrintText to
: display string
MY_NUMBER
DCD 0x12345678
HELLO_TXT

DCB "Hello\n",0 : null terminated string

s
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Assembler Language: Basic Syntax
(continued)

* A number of data definition directives are available for insertion of
constants inside assembly code.

* For example, DCI (Define Constant Instruction) can be used to code an
instruction if the assembler cannot generate the exact instruction that
you want and if you know the binary code for the instruction.

DCI OxBEOO ; Breakpoint (BKPT 0), a 16-bit instruction
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Assembler Language: Use of Suffixes

* In assembler for ARM processors, instructions can be followed by
suffixes, as shown in Table 4.1.

Table 4.1 Suffixes in Instructions
Suffix Description

S Update Application Program Status register (APSR) (flags); for example:
ADDS RO, R1 ; this will update APSR

EQ, NE, LT, GT, and Conditional execution; EQ = Equal, NE = Not Equal, LT = Less Than, GT = Greater
SO on Than, and so forth. For example:
BEQ <Label> ; Branch if equal
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Assembler Language: Use of Suffixes
(continued)

* For the Cortex-M3, the conditional execution suffixes are usually
used for branch instructions.

* However, other instructions can also be used with the conditional
execution suffixes if they are inside an IF-THEN instruction block.

* |n those cases, the S suffix and the conditional execution suffixes can
be used at the same time.
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Assembler Language: Unified Assembler
Language

* The Unified Assembler Language (UAL) was developed to allow
selection of 16-bit and 32-bit instructions.

* Supports and gets the best out of the Thumb-2 instruction set.

* With UAL, the syntax of Thumb instructions is now the same as for
ARM instructions.

* Makes it easier to port applications between ARM code and Thumb
code by using the same syntax for both.

ADD RO, Rl : RO = RO + R1, using Traditional Thumb syntax
ADD RO, RO, R1 ; Equivalent instruction using UAL syntax
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Assembler Language: Unified Assembler
Language (continued)

* The traditional Thumb syntax can still be used.

* The choice between whether the instructions are interpreted as
traditional Thumb code or the new UAL syntax is normally defined
by the directive in the assembly file.

* For example, with ARM assembler tool, a program code header with
“CODE16” directive implies the code is in the traditional Thumb

syntax, and “THUMB” directive implies the code is in the new UAL
syntax.
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Assembler Language: Unified Assembler
Language (continued)

* One thing we need to be careful with reusing traditional Thumb is
that some instructions change the flags in APSR, even if the S suffix
is not used.

* However, when the UAL syntax is used, whether the instruction
changes the flag depends on the S suffix.

* For example,

AND RO, Rl : Traditional Thumb syntax
ANDS RO, RO, R1 ; Equivalent UAL syntax (S suffix is added)
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Assembler Language: Unified Assembler
Language (continued)

* With the new instructions in Thumb-2 technology, some of the operations can
be handled by either a Thumb instruction or a Thumb-2 instruction.

* For example, RO =R0 + 1 can be implemented as a 16-bit Thumb instruction or a 32-
bit Thumb-2 instruction.

* With UAL, you can specify which instruction you want by adding suffixes:

ADDS RO, #1 ; Use 16-bit Thumb instruction by default
- for smaller size
ADDS.N RO, #1 : Use 16-bit Thumb instruction (N=Narrow)

ADDS.W RO, #1 : Use 32-bit Thumb-2 instruction (W=wide)
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Assembler Language: Unified Assembler
Language (continued)

The W (wide) suffix specifies a 32-bit instruction.

* If no suffix is given, the assembler tool can choose either instruction but
usually defaults to 16-bit Thumb code to get a smaller size.

* Depending on tool support, you may also use the .N (narrow) suffix to
specify a 16-bit Thumb instruction.

* In most cases, applications will be coded in C, and the C compilers will
use 16-bit instructions if possible due to smaller code size.

* However, when the immediate data exceed a certain range or when the
operation can be better handled with a 32-bit Thumb-2 instruction, the 32-

bit instruction will be used.
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Assembler Language: Unified Assembler
Language (continued)

* The 32-bit Thumb-2 instructions can be half word aligned.

* For example, you can have a 32-bit instruction located in a half word
location.

0x1000 : LDR rO,[rl] ;a 16-bit instructions (occupy 0x1000-0x1001)
0x1002 : RBIT.W rO :da 32-bit Thumb-2 instruction (occupy
0x1002-0x1005)

* Most of the 16-bit instructions can only access registers RO—R7.
* 32-bit Thumb-2 instructions do not have this limitation.
* However, use of PC (R15) might not be allowed in some of the instructions.
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lnstruction List
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16-Bit Data Processing Instructions

Instruction

ADC
ADD
ADR
AND
ASR
BIC
CMN

CMP
CPY

EOR
LSL

LSR

MOV
MUL
MVN
NEG

Table 4.2 16-Bit Data Processing Instructions

Function

Add with carry

Add

Add PC and an immediate value and put the result in a register

Logical AND

Arithmetic shift right

Bit clear (Logical AND one value with the logic inversion of another value)
Compare negative (compare one data with two’s complement of another data and
update flags)

Compare (compare two data and update flags)

Copy (available from architecture v6; move a value from one high or low register to
another high or low register); synonym of MOV instruction

Exclusive OR

Logical shift left

Logical shift right

Move (can be used for register-to-register transfers or loading immediate data)
Multiply

Move NOT (obtain logical inverted value)

Negate (obtain two’s complement value), equivalent to RSB

Shrishail Bhat, Dept. of ECE, AITM Bhatkal




16-Bit Data Processing Instructions
(continued)

Table 4.2 16-Bit Data Processing Instructions Continued

Instruction Function

ORR Logical OR

RSB Reverse subtract

ROR Rotate right

SBC Subtract with carry

SUB Subtract

TST Test (use as logical AND; Z flag is updated but AND result is not stored)

REV Reverse the byte order in a 32-bit register (available from architecture v6)

REV16 Reverse the byte order in each 16-bit half word of a 32-bit register (available from
architecture v6)

REVSH Reverse the byte order in the lower 16-bit half word of a 32-bit register and sign
extends the result to 32 bits (available from architecture v6)

SXTB Signed extend byte (available from architecture v6)

SXTH Signed extend half word (available from architecture v6)

UXTB Unsigned extend byte (available from architecture v6)

UXTH Unsigned extend half word (available from architecture v6)

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 18




16-Bit Branch Instructions

Table 4.3 16-Bit Branch Instructions

Instruction Function

B Branch

B<cond> Conditional branch

BL Branch with link; call a subroutine and store the return address in LR (this is actually
a 32-bit instruction, but it is also available in Thumb in traditional ARM processors)

BLX Branch with link and change state (BLX <reg> only)’

BX <reg> Branch with exchange state

CBZ Compare and branch if zero (architecture v7)

CBNZ Compare and branch if nonzero (architecture v7)

m IF-THEN (architecture v7)
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16-Bit Load and Store Instructions

Table 4.4 16-Bit Load and Store Instructions

Instruction Function

LDR Load word from memory to register

LDRH Load half word from memory to register

LDRB Load byte from memory to register

LDRSH Load half word from memory, sign extend it, and put it in register
LDRSB Load byte from memory, sign extend it, and put it in register
STR Store word from register to memory

STRH Store half word from register to memory

STRB Store byte from register to memory

LDM/LDMIA Load multiple/Load multiple increment after

STM/STMIA Store multiple/Store multiple increment after

PUSH Push multiple registers

POP Pop multiple registers
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Other 16-Bit Instructions

Instruction

SVC
SEV
WFE
WFI
BKPT

NOP
CPSIE
CPSID

Table 4.5 Other 16-Bit Instructions

Function

Supervisor call

Send event

Sleep and wait for event
Sleep and wait for interrupt

Breakpoint; if debug is enabled, it will enter debug mode (halted), or if debug
monitor exception is enabled, it will invoke the debug exception; otherwise, it will
invoke a fault exception

No operation
Enable PRIMASK (CPSIE i)/FAULTMASK (CPSIE f) register (set the register to 0)
Disable PRIMASK (CPSID i)/ FAULTMASK (CPSID f ) register (set the register to 1)
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32-Bit Data Processing Instructions

Table 4.6 32-Bit Data Processing Instructions

Instruction Function

ADC Add with carry

ADD Add

ADDW Add wide (#immed_12)

ADR Add PC and an immediate value and put the result in a register

AND Logical AND

ASR Arithmetic shift right

BIC Bit clear (logical AND one value with the logic inversion of another value)

BFC Bit field clear

BFI Bit field insert

CMN Compare negative (compare one data with two's complement of another data and
update flags)
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32-Bit Data Processing Instructions
(continued)

Table 4.6 32-Bit Data Processing Instructions Continued

Instruction Function

CMP Compare (compare two data and update flags)

ClLZ Count leading zero

EOR Exclusive OR

LSL Logical shift left

LSR Logical shift right

MLA Multiply accumulate

MLS Multiply and subtract

MOV Move

MOVW Move wide (write a 16-bit immediate value to register)
MOVT Move top (write an immediate value to the top half word of destination reg)
MVN Move negative

MUL Multiply

ORR Logical OR

ORN Logical OR NOT
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32-Bit Data Processing Instructions
(continued)

Table 4.6 32-Bit Data Processing Instructions Continued
Instruction Function

RBIT Reverse bit

REV Byte reverse word

REV16 Byte reverse packed half word
REVSH Byte reverse signed half word
ROR Rotate right

RSB Reverse subtract

RRX Rotate right extended

SBC Subtract with carry

SBFX Signed bit field extract

SDIV Signed divide

SMLAL Signed multiply accumulate long
SMULL Signed multiply long

SSAT Signed saturate
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32-Bit Data Processing Instructions
(continued)

Table 4.6 32-Bit Data Processing Instructions Continued

Instruction Function

SBC Subtract with carry

SUB Subtract

SUBW Subtract wide (#immed_12)

SXTB Sign extend byte

SXTH Sign extend half word

TEQ Test equivalent (use as logical exclusive OR; flags are updated but result is not
stored)

TST Test (use as logical AND; Z flag is updated but AND result is not stored)

UBFX Unsigned bit field extract

UDIV Unsigned divide

UMLAL Unsigned multiply accumulate long

UMULL Unsigned multiply long

USAT Unsigned saturate

UXTB Unsigned extend byte

UXTH Unsigned extend half word
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32-Bit Load and Store Instructions

Table 4.7 32-Bit Load and Store Instructions

Instruction Function

LDR Load word data from memory to register

LDRT Load word data from memory to register with unprivileged access

LDRB Load byte data from memory to register

LDRBT Load byte data from memory to register with unprivileged access

LDRH Load half word data from memory to register

LDRHT Load half word data from memory to register with unprivileged access

LDRSB Load byte data from memory, sign extend it, and put it to register

LDRSBT Load byte data from memory with unprivileged access, sign extend it, and put it to
register

LDRSH Load half word data from memory, sign extend it, and put it to register

LDRSHT Load half word data from memory with unprivileged access, sign extend it, and put
it to register

LDM/LDMIA Load muiltiple data from memory to registers

LDMDB Load multiple decrement before

LDRD Load double word data from memory to registers

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 26




32-Bit Load and Store Instructions
(continued)

Table 4.7 32-Bit Load and Store Instructions Continued

Instruction Function

STR Store word to memory

STRT Store word to memory with unprivileged access
STRB Store byte data to memory

STRBT Store byte data to memory with unprivileged access
STRH Store half word data to memory

STRHT Store half word data to memory with unprivileged access
STM/STMIA Store multiple words from registers to memory
STMDB Store multiple decrement before

STRD Store double word data from registers to memory
PUSH Push multiple registers

POP Pop multiple registers
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32-Bit Branch Instructions

Table 4.8 32-Bit Branch Instructions

Instruction Function

B Branch

B<cond> Conditional branch

BL Branch and link

BB Table branch byte; forward branch using a table of single byte offset
TBH Table branch half word; forward branch using a table of half word offset
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Other 32-Bit Instructions

Table 4.9 Other 32-Bit Instructions

Instruction Function

LDREX Exclusive load word

LDREXH Exclusive load half word

LDREXB Exclusive load byte

STREX Exclusive store word

STREXH Exclusive store half word

STREXB Exclusive store byte

CLREX Clear the local exclusive access record of local processor
MRS Move special register to general-purpose register
MSR Move to special register from general-purpose register
NOP No operation

SEV Send event

WFE Sleep and wait for event

WEHI Sleep and wait for interrupt

ISB Instruction synchronization barrier

DSB Data synchronization barrier

DMB Data memory barrier
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Instruction Descriptions




Assembler Language: Moving Data

* One of the most basic functions in a processor is transfer of data.

* In the Cortex-M3, data transfers can be of one of the following
types:
* Moving data between register and register
* Moving data between memory and register
* Moving data between special register and register

* Moving an immediate data value into a register
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Assembler Language: Moving Data
(continued)

* The command to move data between registers is MOV (move).
* For example, the instruction

MOV R8, R3

moves data from register R3 to register R8.

* Another instruction can generate the negative value of the
original data; it is called MVN (move NOT).

MVN R8, R3

performs a bitwise logical NOT operation on data from
register R3 and moves it to register R8.




Assembler Language: Moving Data
(continued)

* The basic instructions for accessing memory are Load and
Store.

* Load (LDR) transfers data from memory to registers, and
Store (STR) transfers data from registers to memory.

* The transfers can be in different data sizes (byte, half word,
word, and double word), as outlined in Table 4.14.




Assembler Language: Moving Data
(continued)

Table 4.14 Commonly Used Memory Access Instructions

Example Description

LDRB Rd, [Rn, {ffoffset] Read byte from memory location Rn + offset

LDRH Rd, [Rn, {ffoffset] Read half word from memory location Rn + offset
LDR Rd, [Rn, ffoffset] Read word from memory location Bn + offset

LDRD Rd1,Rd2, [Rn, foffset] Read double word from memory location Rn + offset
STRB Rd, [Rn, foffset] Store byte to memory location Rn + offset

STRH Rd, [Rn, foffset] Store half word to memory location Rn + offset

STR Rd, [Rn, foffset] Store word to memory location Rn + offset

STRD Rd1,Rd2, [Rn, foffset] Store double word to memory location Rn + offset
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Assembler Language: Moving Data
(continued)

* Multiple Load and Store operations can be combined into single instructions
called LDM (Load Multiple) and STM (Store Multiple), as outlined in Table 4.15.

Table 4.15 Multiple Memory Access Instructions

Example Description

LDMIA Rd!,<reg 1ist> Read multiple words from memory location specified by Rd; address
increment after (IA) each transfer (16-bit Thumb instruction)

STMIA Rd!,<reg list> Store multiple words to memory location specified by Rd; address

increment after (IA) each transfer (16-bit Thumb instruction)
LDMIA.W Rd(!),<reg 1list> Read multiple words from memory location specified by Rd; address
increment after each read (\W specified it is a 32-bit Thumb-2 instruction)

LDMDB.W Rd(!),<reg 1list> Read multiple words from memory location specified by Rd; address
Decrement Before (DB) each read (.\W specified it is a 32-bit Thumb-2
instruction)

STMIA.W Rd(!),<reg Tist> Write multiple words to memory location specified by Rd; address
increment after each read (\W specified it is a 32-bit Thumb-2 instruction)

STMDB.W Rd(!),<reg Tist> Write multiple words to memory location specified by Rd; address DB
each read (.\W specified it is a 32-bit Thumb-2 instruction)
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Assembler Language: Moving Data

(conti

nued)

* The exc

amation mark (!) in the instruction specifies whether the

register Rd should be updated after the instruction is completed.
* For example, if R8 equals 0x8000:

STMIA.W R8!, {RO-R3} ; R8 changed to 0x8010 after store

: (increment by 4 words)

STMIA.W R8 , {RO-R3} ; R8B unchanged after store
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Assembler Language: Moving Data
(continued)

* ARM processors also support memory accesses with preindexing and postindexing.

* For preindexing, the register holding the memory address is adjusted.

* The memory transfer then takes place with the updated address.
* For example,

LDR.W RO,[R1, f#offset]! ; Read memory[Rl+offset], with Rl
; update to Rl+offset

* The use of the “!” indicates the update of base register R1.

* The “1” is optional; without it, the instruction would be just a normal memory transfer with
offset from a base address.

* The preindexing memory access instructions include load and store instructions of
various transfer sizes (see Table 4.16).
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Assembler Language: Moving Data
(continued)

Table 4.16 Examples of Preindexing Memory Access Instructions

Example

LDR.W Rd,
LDRB.W Rd,
LDRH.W Rd,

LDRD.W Rdl,

LDRSB.W Rd,
LDRSH.W Rd,

STR.W Rd,
STRB.W Rd,
STRH.W Rd,

STRD.W Rdl,

[Rn
[Rn
[Rn
Rd?

[Rn
[Rn

[Rn
[Rn
[Rn
Rd?

, Ffoffset]!
, Jfoffset]!
, Jfoffset]!
,[Rn, #offset]!

, Jfoffset]!
, Jfoffset]!

, Ffoffset]!
, Jfoffset]!
, Jfoffset]!
,[Rn, #offset]!

Description

Preindexing load instructions for various sizes (word, byte, half
word, and double word)

Preindexing load instructions for various sizes with sign extend
(byte, half word)

Preindexing store instructions for various sizes (word, byte, half
word, and double word)
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Assembler Language: Moving Data
(continued)

* Postindexing memory access instructions carry out the memory transfer using
the base address specified by the register and then update the address register

afterward.
* For example,

LDR.W RO,[R1], joffset ; Read memory[R1], with R1
; updated to Rl+offset

o\
!

* When a postindexing instruction is used, there is no need to use the “!” sign,

because all postindexing instructions update the base address register.

* Similarly to preindexing, postindexing memory access instructions are available
for different transfer sizes (see Table 4.17).
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Assembler Language: Moving Data

(continued)

Example

LDR.W Rd, [Rn], ffoffset
LDRB.W Rd, [Rn], ffoffset
LDRH.W Rd, [Rn], ffoffset
LDRD.W Rdl, Rd2,[Rn], jfoffset

LDRSB.W Rd, [Rn], f#offset
LDRSH.W Rd, [Rn], foffset

STR.W Rd, [Rn], f#foffset
STRB.W Rd, [Rn], #offset
STRH.W Rd, [Rn], ffoffset
STRD.W Rd1l, Rd2,[Rn], Ffoffset

Table 4.17 Examples of Postindexing Memory Access Instructions

Description

Postindexing load instructions for various sizes (word, byte,
half word, and double word)

Postindexing load instructions for various sizes with sign
extend (byte, half word)

Postindexing store instructions for various sizes (word, byte,
half word, and double word)
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Assembler Language: Moving Data
(continued)

* Two other types of memory operation are stack PUSH and stack POP.

* For example,

PUSH {RO, R4-R7, R9} ; Push RO, R4, R5, R6, R7, R9 into
; stack memory
POP {R2,R3} ; Pop RZ2 and R3 from stack

* Usually a PUSH instruction will have a corresponding POP with the same
register list, but this is not always necessary.

* For example, a common exception is when POP is used as a function return:

PUSH {RO-R3, LR} ; Save register contents at beginning of
; subroutine

o i : Processing

POP {RO-R3, PC} ; restore registers and return

* In this case, instead of popping the LR register back and then branching to the
address in LR, we POP the address value directly in the program counter.
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Assembler Language: Moving Data
(continued)

* To access special registers, we use the instructions MRS and MSR.
* For example,

MRS RO, PSR : Read Processor status word into RO
MSR CONTROL, R1 ; Write value of Rl into control register

* Unless you're accessing the APSR, you can use MSR or MRS to
access other special registers only in privileged mode.
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Assembler Language: Moving Data
(continued)

* Moving immediate data into a register is a common thing to do.

* For example, you might want to access a peripheral register, so you need
to put the address value into a register beforehand.

* For small values (8 bits or less), you can use MOVS (move).
* For example,

MOVS RO, #0x12 ; Set RO to 0x12

* For a larger value (over 8 bits), you might need to use a Thumb-2 move
instruction.

* For example,

MOVW.W RO, #0x789A ; Set RO to 0x789A
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Assembler Language: Moving Data
(continued)

* Or if the value is 32-bit, you can use two instructions to set the
upper and lower halves:

MOVW.W RO,#0x789A ; Set RO lower half to 0x789A
MOVT.W RO,#0x3456 ; Set RO upper half to 0x3456. Now
: R0O=0x3456789A
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LDR and ADR Pseudo-Instructions

* LDR and ADR pseudo-instructions can be used to set registers to a
program address value.

* This is not a real assembler command, but the ARM assembler will
convert it into a PC relative load instruction to produce the required

data.

* To generate 32-bit immediate data, using LDR is recommended
rather than the MOVW.W and MOVT.W combination because it
gives better readability and the assembler might be able to reduce
the memory being used if the same immediate data are reused in
several places of the same program.
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LDR and ADR Pseudo-Instructions
(continued)

* For LDR, if the address is a program address value, the assembler
will automatically set the LSB to 1.

* For example,

LDR RO, =addressl ; RO set to 0x4001

addressl ; address here is 0x4000
MOV RO, R1 ; addressl contains program code

* You will find that the LDR instruction will put 0x4001 into R1; the
LSB is set to 1 to indicate that it is Thumb code.
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LDR and ADR Pseudo-Instructions
(continued)

* |If address1 is a data address, LSB will not be changed.
* For example,

LDR RO, =addressl ; RO set to 0x4000

addressl : address here is 0x4000
DCD 0x0 ; addressl contains data
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LDR and ADR Pseudo-Instructions
(continued)

* For ADR, you can load the address value of a program code into a
register without setting the LSB automatically.

* For example,

ADR RO, addressl

addressl ; (address here is 0x4000)
MOV RO, R1 ; addressl contains program code

* You will get 0x4000 in the ADR instruction.

* Note that there is no equal sign (=) in the ADR statement.
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LDR and ADR Pseudo-Instructions
(continued)

* LDR obtains the immediate data by putting the data in the program
code and uses a PC relative load to get the data into the register.

* ADR tries to generate the immediate value by adding or subtracting
instructions (for example, based on the current PC value).

* As a result, it is not possible to create all immediate values using
ADR, and the target address label must be in a close range.

* However, using ADR can generate smaller code sizes compared with
LDR.
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Assembler Language: Processing Data

* The Cortex-M3 provides many different instructions for data processing.

* Many data operation instructions can have multiple instruction formats.

* For example, an ADD instruction can operate between two registers or
between one register and an immediate data value:

ADD RO, RO, RI1 ; RO = RO + R1
ADDS RO, RO, #0x12 ; RO = RO + Ox12
ADD.W RO, R1, RZ : RO = R1 + R2

* These are all ADD instructions, but they have different syntaxes and binary
coding.
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Assembler Language: Processing Data
(continued)

* With the traditional Thumb instruction syntax, when 16-bit Thumb
code is used, an ADD instruction can change the flags in the PSR.

* However, 32-bit Thumb-2 code can either change a flag or keep it
unchanged.

* To separate the two different operations, the S suffix should be used if
the following operation depends on the flags:

ADD.W RO, R1, RZ2 ; Flag unchanged
ADDS.W RO, R1, RZ2 ; Flag change
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Assembler Language: Processing Data
(continued)

* Aside from ADD instructions, the arithmetic functions that the
Cortex-M3 supports include subtract (SUB), multiply (MUL), and
unsigned and signed divide (UDIV/SDIV).

* Table 4.18 shows some of the most commonly used arithmetic
instructions.

* These instructions can be used with or without the “S” suffix to
determine if the APSR should be updated.
* In most cases, if UAL syntax is selected and if “S” suffix is not used, the 32-bit

version of the instructions would be selected as most of the 16-bit Thumb
instructions update APSR.
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Assembler Language: Processing Data
(continued)

Table 4.18 Examples of Arithmetic Instructions

Instruction Operation

ADD Rd, Rn, Rm : Rd = Rn + Rm ADD operation

ADD Rd, Rd, Rm : Rd = Rd + Rm

ADD Rd, #immed : Rd = Rd + #immed

ADD Rd, Rn, # immed ; Rd = Rn + #immed

ADC Rd, Rn, Rm : Rd = Rn + Rm + carry ADD with carry

ADC Rd, Rd, Rm : Rd = Rd + Rm + carry

ADC Rd, #immed : Rd = Rd + #immed + carry

ADDW Rd, Rn,#immed ; Rd = Rn + #immed ADD register with 12-bit immediate value
SUB Rd, Rn, Rm ;: Rd = Rn — Rm SUBTRACT

SUB Rd, #immed : Rd = Rd — #immed

SUB Rd, Rn,#immed ; Rd = Rn — #immed

SBC Rd, Rm : Rd = Rd — Rm — borrow SUBTRACT with borrow (not carry)
SBC.W Rd, Rn, #immed ; Rd = Rn — #immed — borrow

SBC.W Rd, Rn, Rm : Rd = Rn — Rm — borrow

RSB.W Rd, Rn, {fimmed ; Rd = #immed -Rn Reverse subtract

RSB.W Rd, Rn, Rm ; Rd = Rm — Rn

MUL Rd, Rm : Rd = Rd * Rm Multiply

MUL.W Rd, Rn, Rm : Rd = Rn * Rm

UDIV Rd, Rn, Rm : Rd = Rn/Rm Unsigned and signed divide
SDIV Rd, Rn, Rm : Rd = Rn/Rm
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Assembler Language: Processing Data
(continued)

* The Cortex-M3 also supports 32-bit multiply instructions and multiply
accumulate instructions that give 64-bit results.

* These instructions support signed or unsigned values (see Table 4.19).

Table 4.19 32-Bit Multiply Instructions

Instruction Operation

SMULL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} = Rn * Rm 32-bit multiply instructions for signed
SMLAL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} += Rn * Rm values

UMULL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} = Rn * Rm 32-bit multiply instructions for
UMLAL RdLo, RdHi, Rn, Rm ; {RdHi,RdLo} += Rn * Rm unsigned values
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Assembler Language: Processing Data
(continued)

* Another group of data processing instructions are the logical
operations instructions and logical operations such as AND, ORR
(or), and shift and rotate functions.

* Table 4.20 shows some of the most commonly used logical
Instructions.

* These instructions can be used with or without the “S” suffix to
determine if the APSR should be updated.
* If UAL syntax is used and if “S” suffix is not used, the 32-bit version of

the instructions would be selected as all of the 16-bit logic operation
instructions update APSR.
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Assembler Language: Processing Data
(continued)

Table 4.20 Logic Operation Instructions

Instruction Operation

AND Rd, Rn : Rd = Rd & Rn Bitwise AND
AND.W Rd, Rn,#immed ; Rd = Rn & #immed

AND.W Rd, Rn, Rm : Rd = Rn & Rd

ORRRd, Rn : Rd = Rd | Rn Bitwise OR
ORR.W Rd, Rn,#fimmed ; Rd = Rn | #immed

ORR.W Rd, Rn, Rm : Rd = Rn | Rd

BIC Rd, Rn : Rd = Rd & (~Rn) Bit clear

BIC.W Rd, Rn,#immed ; Rd = Rn &(~ffimmed)

BIC.W Rd, Rn, Rm : Rd = Rn &(~Rd)

ORN.W Rd, Rn,#immed ; Rd = Rn | (~ffimmed) Bitwise OR NOT
ORN.W Rd, Rn, Rm : Rd = Rn | (~Rd)

EOR Rd, Rn : Rd = Rd » Rn Bitwise Exclusive OR
EOR.W Rd, Rn,#immed ; Rd = Rn | #immed

EOR.W Rd, Rn, Rm : Rd = Rn | Rd
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Assembler Language: Processing Data
(continued)

* The Cortex-M3 provides rotate and shift instructions.

* |n some cases, the rotate operation can be combined with other
operations (for example, in memory address offset calculation for
load/store instructions).

* For standalone rotate/shift operations, the instructions shown in
Table 4.21 are provided.

* Again, a 32-bit version of the instruction is used if “S” suffix is not
used and if UAL syntax is used.
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Assembler Language: Processing Data
(continued)

Table 4.21 Shift and Rotate Instructions

Instruction Operation

ASR Rd, Rn,#immed ; Rd = Rn » immed Arithmetic shift right
ASRRd, Rn : Rd = Rd » Rn

ASR.W Rd, Rn, Rm : Rd = Rn » Rm

LSLRd, Rn,#immed : Rd = Rn « immed Logical shift left
LSLRd, Rn : Rd = Rd « Rn

LSL.W Rd, Rn, Rm ;: Rd = Rn « Rm

LSRRd, Rn,#immed : Rd = Rn » immed Logical shift right
LSRRd, Rn : Rd = Rd » Rn

LSR.W Rd, Rn, Rm : Rd = Rn » Rm

ROR Rd, Rn : Rd rot by Rn Rotate right

ROR.W Rd, Rn,f##immed ; Rd = Rn rot by immed

ROR.W Rd, Rn, Rm : Rd = Rn rot by Rm

RRX.W Rd, Rn : {C, Rd} = {Rn, C} Rotate right extended
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Assembler Language: Processing Data
(continued)

* In UAL syntax, the rotate and shift operations can also update the
carry flag if the S suffix is used (and always update the carry flag if
the 16-bit Thumb code is used).

* See Figure 4.1.

* If the shift or rotate operation shifts the register position by
multiple bits, the value of the carry flag C will be the last bit that
shifts out of the register.




Assembler Language: Processing Data
(continued)

Logical Shift Left (LSL)

C |e—1 Register «—— 0
Logical Shift Right (LSR)
00— Register —» C
Rotate Right (ROR)
—p Register » C

Arithmetic Shift Right (ASR) |
R Register —» C
Rotate Right eXtended (RRX) |
. Register — C

FIGURE 4.1
Shift and Rotate Instructions.
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Assembler Language: Processing Data
(continued)

Why is there rotate right but no rotate left?

* The rotate left operation can be replaced by a rotate right operation
with a different rotate offset.
* For example, a rotate left by 4-bit operation can be written as a rotate

right by 28-bit instruction, which gives the same result and takes the
same amount of time to execute.
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Assembler Language: Processing Data
(continued)

* For conversion of signed data from byte or half word to word, the
Cortex-M3 provides the two instructions shown in Table 4.22.

* Both 16-bit and 32-bit versions are available.
* The 16-bit version can only access low registers.

Table 4.22 Sign Extend Instructions
Instruction Operation

SXTB Rd, Rm ; Rd = signext(Rm[7:0])  Sign extend byte data into word
SXTH Rd, Rm ; Rd = signext(Rm[15:0]) Sign extend half word data into word
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Assembler Language: Processing Data
(continued)

* Another group of data processing instructions is used for reversing data bytes in a register (see
Table 4.23).

* These instructions are usually used for conversion between little endian and big endian data.
* See Figure 4.2.

* Both 16-bit and 32-bit versions are available.
* The 16-bit version can only access low registers.

Table 4.23 Data Reverse Ordering Instructions

Instruction Operation

REV Rd, Rn ; Rd = rev(Rn) Reverse bytes in word

REV16 Rd, Rn ; Rd = revl6(Rn) Reverse bytes in each half word

REVSH Rd, Rn ; Rd = revsh(Rn) Reverse bytes in bottom half word and sign extend the

result
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Assembler Language: Processing Data
(continued)

Bit Bit Bit Bit
[31:24]  [23:16]  [15:8] [7:0]

REVSH.W
(Reverse bytes in bottom

half word and sign extend results)
sign extend 2<
-
FIGURE 4.2

Operation of Reverse instructions.

REV.W
(Reverse bytes in word)

REVi6.W
(Reverse bytes in half word)
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Assembler Language: Processing Data
(continued)

* The last group of data processing instructions is for bit field processing.
* They include the instructions shown in Table 4.24.

Table 4.24 Bit Field Processing and Manipulation Instructions

Instruction Operation

BFC.W Rd, Rn, #<width> Clear bit field within a register

BFI.W Rd, Rn, #<1sb>, #<width> Insert bit field to a register

CLZ.W Rd, Rn Count leading zero

RBIT.W Rd, Rn Reverse bit order in register

SBFX.W Rd, Rn, #<1sb>, #<width> Copy bit field from source and sign extend it
UBFX.W Rd, Rn, #<1sb>, #<width> Copy bit field from source register
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Assembler Language: Call and
Unconditional Branch

* The most basic branch instructions are as follows:

B 1abel ; Branch to a labeled address
BX reg ; Branch to an address specified by a register

* In BX instructions, the LSB of the value contained in the register
determines the next state (Thumb/ARM) of the processor.

* In the Cortex-M3, because it is always in Thumb state, this bit should be

set to 1.
* Ifitis zero, the program will cause a usage fault exception because it is trying
to switch the processor into ARM state.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Assembler Language: Call and
Unconditional Branch (continued)

* To call a function, the branch and link instructions should be used.

BL 1abel : Branch to a l1abeled address and save return
: address in LR

BLX reg : Branch to an address specified by a register and
: save return
. address in LR.

* With these instructions, the return address will be stored in the link register
(LR) and the function can be terminated using BX LR, which causes program
control to return to the calling process.

* However, when using BLX, make sure that the LSB of the register is 1.

* Otherwise the processor will produce a fault exception because it is an
attempt to switch to the ARM state.
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Assembler Language: Call and
Unconditional Branch (continued)

SAVE THE LR IF YOU NEED TO CALL A SUBROUTINE

The BL instruction will destroy the current content of your LR. So, if your program code needs the LR later, you
should save your LR before you use BL. The common method is to push the LR to stack in the beginning of
your subroutine. For example,

main
BL functionA

functionA
PUSH {LR} : Save LR content to stack

BL functionB

POP {PC} ; Use stacked LR content to return to main
functionB
PUSH {LR}

POP {PC} ; Use stacked LR content to return to functionA

In addition, if the subroutine you call is a C function, you might also need to save the contents in RO-R3
and R12 if these values will be needed at a later stage. According to AAPCS [Ref. 5], the contents in these

registers could be changed by a C function.
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Assembler Language: Decisions and
Conditional Branches

* Most conditional branches in ARM processors use flags in the APSR
to determine whether a branch should be carried out.

* In the APSR, there are five flag bits; four of them are used for
branch decisions, as shown in Table 4.25.

Table 4.25 Flag Bits in APSR that Can Be Used for Conditional Branches

Flag PSR Bit Description

N 31 Negative flag (last operation result is a negative value)
Z 30 Zero (last operation result returns a zero value)

C 29 Carry (last operation returns a carry out or borrow)

Vv 28 Overflow (last operation results in an overflow)
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Assembler Language: Decisions and
Conditional Branches (continued)

With combinations of the four flags (N, Z, C, and V'), 15 branch
conditions are defined, as shown in Table 4.26.

* Using these conditions, branch instructions can be written as, for
example,

BEQ Tabel ; Branch to address 'label' if Z flag is set

We can also use the Thumb-2 version if your branch target is further
away.
* For example,

BEQ.W 1abel ; Branch to address 'label' if Z flag is set
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Table 4.26 Conditions for Branches or Other Conditional Operations

Symbol Condition Flag

EQ Equal Z set

NE Not equal Z clear

CS/HS Carry set/unsigned higher or same C set

CC/LO Carry clear/unsigned lower C clear

M Minus/negative N set

PL Plus/positive or zero N clear

VS Overflow V set

VC No overflow V clear

HI Unsigned higher C setand Z clear

LS Unsigned lower or same C clear or Z set

GE Signed greater than or equal N set and V set, or N clear and V clear (N == V)

LT Signed less than N set and V clear, or N clear and V set (N = V)

GT Signed greater than Z clear, and either N set and V set, or N clear and
Vclear (Z==0,N==V)

LE Signed less than or equal Z set, or N set and V clear, or N clear and V set
Z=1orN1=Y)

AL Always (unconditional) -
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Assembler Language: Decisions and
Conditional Branches (continued)

* The defined branch conditions can also be used in IF-THEN-ELSE
structures.

* For example,

CMP RO, Rl . Compare RO and R1

ITTEE GE - If RO > R1 Then
- if true, first 2 statements execute,
- if false, other 2 statements execute

MOVGT RZ2, RO ; RZ = RO

MOVGT R3, R1 ; R3 = Rl

MOVLE R2, RO ; Else RZ = Rl

MOVLE R3, R1 ; R3 RO
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Assembler Language: Decisions and
Conditional Branches (continued)

* APSR flags can be affected by the following:
* Most of the 16-bit ALU instructions
e 32-bit (Thumb-2) ALU instructions with the S suffix; for example, ADDS.W
* Compare (e.g., CMP) and Test (e.g., TST, TEQ)
* Write to APSR/xPSR directly




Assembler Language: Combined Compare and
Conditional Branch

* With ARM architecture v7-M, two new instructions are provided on
the Cortex-M3 to supply a simple compare with zero and
conditional branch operations.

* CBZ (compare and branch if zero)
* CBNZ (compare and branch if nonzero)

* The APSR value is not affected by the CBZ and CBNZ instructions.
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Assembler Language: Combined Compare and
Conditional Branch (continued)

* The compare and branch instructions only support forward
branches. For example,

i=25;
while (i != 0 ){
funcl(); ; call a function

P
}

* This can be compiled into the following:

MOV RO, #5 : Set loop counter
loopl CBZ RO,looplexit ; if loop counter = 0 then exit the Toop
BL funcl - call a function
SUB RO, #1 ; loop counter decrement
B lToopl : next Toop

looplexit
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Assembler Language: Combined Compare and
Conditional Branch (continued)

* The usage of CBNZ is similar to CBZ, apart from the fact that the branch is
taken if the Z flag is not set (result is not zero). For example,

status = strchr(email_address, '@');

if (status == 0){//status is 0 if @ is not in email_address
show_error_message();
exit(1l);

}
* This can be compiled into the following:

BL strchr
CBNZ RO, email_looks_okay ; Branch if result is not zero
BL show_error_message
BL exit
email_looks_okay
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Assembler Language: Conditional Execution
Using IT Instructions

* The IT (IF-THEN) block is very useful for handling small conditional
code.

* It avoids branch penalties because there is no change to program
flow.

* It can provide a maximum of four conditionally executed
instructions.




Assembler Language: Conditional Execution
Using IT Instructions (continued)

* In IT instruction blocks, the first line must be the IT instruction,
detailing the choice of execution, followed by the condition it
checks.

* The first statement after the IT command must be
TRUE-THEN-EXECUTE, which is always written as ITxyz, where T
means THEN and E means ELSE.

* The second through fourth statements can be either THEN (true) or
ELSE (false).




Assembler Language: Conc

itional Execution

Using IT Instructions (continued)

IT<x><y><z> <cond>

: IT instruction (x>, <y>,

- <z> can be T or E)

instrl<cond> <operands>

- 1st instruction (<cond>

. must be same as IT)

instr2<cond or not cond> <operands> ;

2™ jnstruction (can be

- <cond> or <!cond>

instr3<cond or not cond> <operands> ;

3rd instruction (can be

- <cond> or <!cond>

instrd<cond or not cond> <operands> ;

4th instruction (can be

- <cond> or <!cond>
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Assembler Language: Conditional Execution
Using IT Instructions (continued)

* If a statement is to be executed when <cond> is false, the suffix for the
instruction must be the opposite of the condition.

* For example, the opposite of EQ is NE, the opposite of GT is LE, and so on.

* The following code shows an example of a simple conditional execution:

if (R1<R2) then
RZ2=R2-R1
RZ2=R2/2
else
R1=R1-R?
R1=R1/2
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Assembler Language: Conditional Execution
Using IT Instructions (continued)

* |n assembly,

CMP R1, R2 ; If R1 < RZ (Tess then)

ITTEE LT : then execute instruction 1 and 2
: (indicated by T)
: else execute instruction 3 and 4
: (indicated by E)

SUBLT.W R2,R1 ; 1%t instruction

LSRLT.W R2,#1 ; 2 instruction

SUBGE.W R1,R2 ; 3™ instruction (notice the GE is
: opposite of LT)

LSRGE.W R1,#1 ; 4t instruction
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Assembler Language: Conditional Execution
Using IT Instructions (continued)

* We can have fewer than four conditionally executed instructions.
* The minimum is 1.

* We need to make sure the number of T and E occurrences in the IT
instruction matches the number of conditionally executed
instructions after the IT.




Assembler Language: Instruction Barrier and
Memory Barrier Instructions

 Barrier instructions are needed as memory systems get more and more complex.

* In some cases, if memory barrier instructions are not used, race conditions could
OCCUT.

* For example, if the memory map can be switched by a hardware register, after writing
to the memory switching register, DSB instruction should be used.
* Otherwise, if the write to the memory switching register is buffered and takes a few cycles

to complete, and the next instruction accesses the switched memory region immediately,
the access could be using the old memory map.

* In some cases, this might result in an invalid access if the memory switching and
memory access happen at the same time.

* Using DSB in this case will make sure that the write to the memory map switching register is
completed before a new instruction is executed.
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Assembler Language: Instruction Barrier and
Memory Barrier Instructions (continued)

* The following are the three barrier instructions in the Cortex-M3:

Table 4.27 Barrier Instructions

Instruction Description

DMB Data memory barrier; ensures that all memory accesses are completed before
new memaory access is committed

DSB Data synchronization barrier; ensures that all memory accesses are completed
before next instruction is executed

ISB Instruction synchronization barrier; flushes the pipeline and ensures that all
previous instructions are completed before executing new instructions
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Assembler Language: Instruction Barrier and
Memory Barrier Instructions (continued)

* The memory barrier instructions can be accessed in C using Cortex
Microcontroller Software Interface Standard (CMSIS) compliant
device driver library as follows:

void __DMB(void); // Data Memory Barrier
void __DSB(void); // Data Synchronization Barrier
void __ISB(void); // Instruction Synchronization Barrier
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Assembler Language: Instruction Barrier and
Memory Barrier Instructions (continued)

 The DSB and ISB instructions can be important for self-modifying code.

 For example, if a program changes its own program code, the next executed
instruction should be based on the updated program.

* However, since the Brocessor is pipelined, the modified instruction location
might have already been fetched.

* Using DSB and then ISB can ensure that the modified program code is fetched
again.

* Architecturally, the ISB instruction should be used after updating the value of
the CONTROL register.

* In the Cortex-M3 processor, this is not strictly required.

* But if we want to make sure our application is portable, we should ensure an
ISB instruction is used after updating to CONTROL register.
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Assembler Language: Instruction Barrier and
Memory Barrier Instructions (continued)

* DMB is very useful for multi-processor systems.

* For example, tasks running on separate processors might use
shared memory to communicate with each other.

* |In these environments, the order of memory accesses to the shared
memory can be very important.

* DMB instructions can be inserted between accesses to the shared
memory to ensure that the memory access sequence is exactly the
same as expected.
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Assembler Language: Saturation Operations

* The Cortex-M3 supports two instructions that provide signed and
unsigned saturation operations:
» SSAT (for signed data type)
* USAT (for unsigned data type)

* Saturation is commonly used in signal processing — for example, in signal
amplification.
* When an input signal is amplified, there is a chance that the output will be
larger than the allowed output range.

* If the value is adjusted simply by removing the unused MSB, an
overflowed result will cause the signhal waveform to be completely

deformed, as shown in Figure 4.3.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Assembler Language: Saturation Operations
(continued)

FIGURE 4.3
Signed Saturation Operation.




Assembler Language: Saturation Operations
(continued)

* The saturation operation does not prevent the distortion of the signal, but at
least the amount of distortion is greatly reduced in the signal waveform.

* The instruction syntax of the SSAT and USAT instructions is as shown in Table
4.28.

Table 4.28 Saturation Instructions

Instruction Description

SSAT.W <Rd>, #<immed>, <Rn>, {,<shiftd>} Saturation for signed value

USAT.W <Rd>, #<immed>, <Rn>, {,<{shiftd>} Saturation for a signed value into an unsigned value
Rn: Input value

Shift: Shift operation for input value before saturation; optional, can be #L.SL N or #ASR N
Immed: Bit position where the saturation is carried out
Rd: Destination register
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Assembler Language: Saturation Operations
(continued)

* Besides the destination register, the Q-bit in the APSR can also be affected by
the result.

* The Q flag is set if saturation takes place in the operation, and it can be cleared
by writing to the APSR (see Table 4.29).

Table 4.29 Examples of Signed Saturation Results

Input (RO) Output (R1) Q Bit
Ox00020000 Ox00007FFF Set
Ox00008000 Ox00007FFF Set
OxO0007FFF Ox00007FFF Unchanged
Ox00000000 0x00000000 Unchanged
OxFFFF8000 OxFFFF8000 Unchanged
OXFFFF7FFF OxFFFF8000 Set
OxFFFEOOQO OxFFFF8000 Set
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Assemb
(continu

er Language: Saturation Operations
ed)

* For example, if a 32-bit signed value is to be saturated into a 16-bit
signed value, the following instruction can be used:

SSAT.W R1, #16, RO

* Similarly, if a 32-bit unsigned value is to saturate into a 16-bit
unsigned value, the following instruction can be used:

USAT.W R1, #16, RO

* This will provide a saturation feature that has the properties shown
in Figure 4.4,
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Assembler Language: Saturation Operations
(continued)

e e

Dynamic :
range /\/ Amplify

0

With

unsigned
saturation /

FIGURE 4.4
Unsigned Saturation Operation.




Assembler Language: Saturation Operations

(continued)

* For the preceding 16-bit saturation example instruction, the output

values shown in Table 4.30 can be observed.

Input (RO)

0x00020000
Ox00008000
Ox00007FFF
Ox00000000
OxFFFF8000
OxFFFF8001
OxFFFFFFFF

Table 4.30 Examples of Unsigned Saturation Results

Output (R1)

OxO000FFFF
Ox00008000
OxO0007FFF
Ox00000000
Ox00000000
Ox00000000
Ox00000000

Q Bit

Set
Unchanged
Unchanged
Unchanged
Set

Set
Set
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Several Useful Instructions in the
Cortex-M?3




MSR and MRS

* MSR and MRS instructions provide access to the special registers in
the Cortex-M3.

* Syntax:

MRS <Rn>, <SReg> ; Move from Special Register
MSR <SReg>, <Rn> ; Write to Special Register

where <SReg> could be one of the options shown in Table 4.31.

* For example, the following code can be used to set up the process
stack pointer:

LDR RO,=0x20008000 ; new value for Process Stack Pointer (PSP)
MSR PSP, RO
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MSR and MRS (continued)

Table 4.31 Special Register Names for MRS and MSR Instructions

Symbol Description

IPSR Interrupt status register

EPSR Execution status register (read as zero)

APSR Flags from previous operation

IEPSR A composite of IPSR and EPSR

IAPSR A composite of IPSR and APSR

EAPSR A composite of EPSR and APSR

PSR A composite of APSR, EPSR, and IPSR

MSP Main stack pointer

PSP Process stack pointer

PRIMASK Normal exception mask register

BASEPRI Normal exception priority mask register

BASEPRI_MAX Same as normal exception priority mask register, with conditional write (new
priority level must be higher than the old level)

FAULTMASK Fault exception mask register (also disables normal interrupts)

CONTROL Control register
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More on the IF-THEN Instruction Block

* The IF-THEN (IT) instructions allow up to four succeeding
instructions (called an IT block) to be conditionally executed.

* They are in the following formats as shown in Table 4.32, where,
* <x> specifies the execution condition for the second instruction

* <y> specifies the execution condition for the third instruction
* <z> specifies the execution condition for the fourth instruction

* <cond> specifies the base condition of the instruction block; the first
instruction following IT executes if <cond> is true
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More on the IF-THEN Instruction Block

Table 4.32 Various Length of IT Instruction Block
IT Block (each of <x>, <y> and <z>
can either be T [true] or E [else]) Examples
Only one conditional IT {cond> IT EQ
instruction instril<cond> ADDEQ RO, RO, R1
Two conditional I[T<x> {cond> ITE GE
instructions instrl<cond> ADDGE RO, RO, R1
instr2<cond or ~(cond)> ADDLT RO, RO, R3
Three conditional [T<x><y> {cond> ITET GT
instructions instril<cond> ADDGT RO, RO, R1
instr2<cond or ~(cond)> ADDLE RO, RO, R3
instr3<cond or ~(cond)> ADDGT R2, R4, {1
Four conditional [T<x><y><z> <cond> ITETT NE
instructions instrl<cond> ADDNE RO, RO, RI1
instr2<cond or ~(cond)> ADDEQ RO, RO, R3
instr3<cond or ~(cond)> ADDNE R2, R4, #1
instr4<{cond or ~(cond)> MOVNE R5, R3
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More on the IF-THEN Instruction Block
(continued)

* The <cond> part uses the same condition symbols as conditional

branch.
* If “AL” is used as <cond>, then you cannot use “E” in the condition
control as it implies the instruction should never get executed.

* Each of <x>, <y>, and <z> can be either T (THEN) or E (ELSE), which
refers to the base condition <cond>, whereas <cond> uses
traditional syntax such as EQ, NE, GT, or the like.
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More on the IF-THEN Instruction Block
(continued)

* Here is an example of IT use:
if (RO equal R1) then {

R3 = R4 + R5
R3 = R3/2

} else {

R3 = R6 + R7
R3 = R3/2

}

* This can be written as follows:

CMP RO, Rl : Compare RO and Rl

ITTEE EQ : If RO equal R1, Then-Then-Else-Else
ADDEQ R3, R4, R5 ; Add if equal

ASREQ R3, R3, #1 ; Arithmetic shift right if equal
ADDNE R3, R6, R7 ; Add if not equal

ASRNE R3, R3, #1 ; Arithmetic shift right if not equal
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SDIV and UDIV

* The syntax for signed and unsigned divide instructions is as follows:

SDIV.W <Rd>, <Rn>, <Rm>
UDIV.W <Rd>, <Rn>, <Rm>

* The result is Rd = Rn/Rm. For example,

LDR RO,=300 ; Decimal 300
MOV R1,#5
UDIV.W R2, RO, RI

* This will give you an R2 result of 60 (0x3C).
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REV, REVH, and REVSH

* REV reverses the byte order in a data word, and REVH reverses the byte
order inside a half word.

* For example, if RO is 0x12345678,

REV R1, RO
REVH RZ2, RO

* After executing the above instructions, R1 will become 0x78563412, and
R2 will be 0x34127856.

* REV and REVH are particularly useful for converting data between big
endian and little endian.
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REV, REVH, and REVSH (continued)

REVSH is similar to REVH except that it only processes the lower half
word, and then it sign extends the result.

For example, if RO is 0x33448899,
REVSH R1, RO

* After executing the above instruction, R1 will become OxFFFF9988.
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Reverse Bit

The RBIT instruction reverses the bit order in a data word. The syntax is
as follows:

RBIT.W <Rd>, <Rn>

* This instruction is very useful for processing serial bit streams in data
communications. For example, if RO is OxB4E10C23 (binary value
1011 0100 1110 0001 0000 1100 0010 _0011), then,

RBIT.W RO, RI1

* After executing above instruction, RO will become 0xC430872D (binary
value 1100 _0100_0011_0000_1000 0111 0010 1101).
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SXTB, SXTH, UXTB, and UXTH

* The four instructions SXTB, SXTH, UXTB, and UXTH are used to extend a
byte or half word data into a word.

* The syntax of the instructions is as follows:

SXTB <Rd>, <Rn>
SXTH <Rd>, <Rn>
UXTB <Rd>, <Rn>
UXTH <Rd>, <Rn>

* For SXTB/SXTH, the data are sign extended using bit[7]/bit[15] of Rn.
* With UXTB and UXTH, the value is zero extended to 32-bit.
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SXTB, SXTH, UXTB, and UXTH (continued)

* For example, if RO is Ox55AA8765:

SXTB R1, RO ; R1 = 0x00000065
SXTH R1, RO ; R1I = OxFFFF8765
UXTB R1, RO ; R1 = 0x00000065
UXTH R1, RO ; R1 = 0x00008765




Bit Field Clear and Bit Field Insert

* Bit Field Clear (BFC) clears 1-31 adjacent bits in any position of a register.

* The syntax of the instruction is as follows:
BFC.W <Rd>, <#1sb>, <fwidth>

* For example,

LDR  RO,=0x1234FFFF
BFC.W RO, #4, 8

* This will give RO = 0x1234FOOF.
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Bit Field Clear and Bit Field Insert
(continued)

* Bit Field Insert (BFI) copies 1-31 bits (#width) from one register to any
location (#Isb) in another register.

* The syntax is as follows:

BFI.W <Rd>, <Rn>, <#lsb>, <jwidth>

* For example,

LDR  RO,=0x12345678
LDR  R1,=0x3355AACC
BFI.W R1, RO, #8, #16 ; Insert RO[15:0] to R1[23:8]

* This will give R1 = 0x335678CC.
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UBFX and SBFX

* UBFX and SBFX are the unsigned and signed bit field extract instructions.

* The syntax of the instructions is as follows:

UBFX.W <Rd>, <Rn>, <#1sb>, <{#width>
SBFX.W <Rd>, <Rn>, <#lsb>, <Fwidthd>

LDR  RO,=0x12345678
LDR  RI1,=0x3355AACC
BFI.W R1, RO, #8, #16 ; Insert RO[15:0] to R1[23:8]
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UBFX and SBFX (continued)

* UBFX extracts a bit field from a register starting from any location
(specified by #Isb) with any width (specified by #width), zero extends it,
and puts it in the destination register.

* For example,

LDR RO,=0x5678ABCD
UBFX.W R1, RO, #4, #8

* This will give R1 = 0Ox000000BC.
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UBFX and SBFX (continued)

 Similarly, SBFX extracts a bit field, but its sign extends it before putting it
in a destination register.

* For example,

LDR RO,=0x5678ABCD
SBFX.W R1, RO, #4, #8

* This will give R1 = OxFFFFFFBC.
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LDRD and STRD

* The two instructions LDRD and STRD transfer two words of data from or
into two registers.

* The syntax of the instructions is as follows:

LDRD.W <Rxf>, <Rxf2>, [Rn, #+/—offsetl{!}l ; Pre-indexed

LDRD.W <Rxf>, <Rxf2>, [Rn], #+/—0offset - Post-indexed
STRD.W <Rxf>, <Rxf2>, [Rn, #+/-offset]{!} ; Pre-indexed
STRD.W <Rxf>, <Rxf2>, [Rn], #+/-offset - Post-indexed

where <Rxf> is the first destination/source register and <Rxf2> is the
second destination/source register.
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LDRD and STRD (continued)

* For example, the following code reads a 64-bit value located in memory

address 0x1000 into RO and R1:
LDR R2,=0x1000

LDRD.W RO, R1, [R2] ; This will gives RO = memory[0x1000],
: R1 = memory[0x1004]

 Similarly, we can use STRD to store a 64-bit value in memory.

* In the following example, preindexed addressing mode is used:

LDR RZ2,=0x1000 : Base address
STRD.W RO, R1, [R2, #0x20] ; This will gives memory[0x1020] = RO,
: memory[0x1024] = R1
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Table Branch Byte and Table Branch
Halfword

* Table Branch Byte (TBB) and Table Branch Halfword (TBH) are for
implementing branch tables.

* The TBB instruction uses a branch table of byte size offset, and TBH uses
a branch table of half word offset.

* Since the bit 0 of a program counter is always zero, the value in the
branch table is multiplied by two before it’s added to PC.

* Furthermore, because the PC value is the current instruction address
plus four, the branch range for TBB is (2 x 255) + 4 = 514, and the branch
range for TBH is (2 x 65535) + 4 = 131074.

* Both TBB and TBH support forward branch only.
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Table Branch Byte and Table Branch
Halfword (continued)

* TBB has this general syntax:

TBB.W [Rn, Rm]

where Rn is the base memory offset and Rm is the branch table index.
* The branch table item for TBB is located at Rn + Rm.

* Assuming we used PC for Rn, we can see the operation as shown in
Figure 4.5.
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Table Branch Byte and Table Branch
Halfword (continued)

PC
Rn (PC 4)

Rn Rm

FIGURE 4.5

lProgram
Rm N flow
TBB [PC, Rm] %
VAL_0[7:0]

VAL_1[7:0]

VAL_N[7:0]

< NewPC (PC 4) 2 VAL_N[7:0]

TBB Operation.




Table Branch Byte and Table Branch
Halfword (continued)

* For TBH instruction, the process is similar except the memory location of
the branch table item is located at Rn + 2 x Rm and the maximum branch

offset is higher.
* Again, we assume that Rn is set to PC, as shown in Figure 4.6.
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Table Branch Byte and Table Branch
Halfword (continued)

PC
Rn (PC 4)
Rn 2 Rm

FIGURE 4.6

Rm N Program
flow
TBH [PC, Rm, LSL #1]
VAL_0[15:0]
VAL_1[15:0]
VAL_N[15:0]

<<‘ NewPC (PC 4) 2 VAL_N[15:0]

TBH Operation.




Table Branch Byte and Table Branch
Halfword (continued)

* If Rnin the table branch instruction is set to R15, the value used for Rn
will be PC + 4 because of the pipeline in the processor.

* The coding syntax for calculating TBB/TBH branch table content could be
dependent on the development tool.

* When the TBB instruction is executed, the current PC value is at the
address labeled as branchtable (because of the pipeline in the
processor).
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Table Branch Byte and Table Branch
Halfword (continued)

* In ARM assembler (armasm), the TBB branch table can be created in the
following way:

TBB.W [pc, r0] ; when executing this instruction, PC equal
; branchtable

branchtable
DCB ((dest0 — branchtable)/2) ; Note that DCB is used because
: the value is 8-bit
DCB ((destl — branchtable)/2)
DCB ((dest?2 — branchtable)/2)
DCB ((dest3 — branchtable)/2)

destO

iaa 3 cExecute f r0—= 10
destl

sais & ‘Execute 1T r0-=—71
dest?

vaa & EXecute TF rQi=12
dest3

. : Execute if r0 = 3
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Table Branch Byte and Table Branch
Halfword (continued)

* Similarly, for TBH instructions, it can be used as follows:

TBH.W [pc, r0, LSL #1]
branchtable
DCI ((dest0 — branchtable)/2) ; Note that DCI is used because
: the value is 16-bit
DCI ((destl — branchtable)/2)
DCI ((dest2 — branchtable)/2)
DCI ((dest3 — branchtable)/2)

destO

: : Execute if r0 =0
destl

... 3 Execute if r0 =1
dest?

. : Execute if r0 = 2
dest3

. : Execute if r0 = 3
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Cortex-M3
Programming




Overview

* The Cortex-M3 can be programmed using either assembly
language, C language, or other high-level languages like National
Instruments LabVIEW.

* For most embedded applications using the Cortex-M3 processor,
the software can be written entirely in C language.

* However, some people prefer to use assembly language or a
combination of C and assembly language in their projects.

* The procedure of building and downloading the resultant image
files to the target device is largely dependent on the tool chain
used.
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A Typical Development Flow

* Various software programs are available for developing Cortex-M3
applications.

* The concepts of code generation flow in terms of these tools are
similar.

* For the most basic uses, we will need assembler, a C compiler, a
linker, and binary file generation utilities.

* For ARM solutions, the RealView Development Suite (RVDS) or
RealView Compiler Tools (RVCT) provide a file generation flow, as
shown in Figure 10.1.
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A Typical Development Flow (continued)

C files (.c) Object files (.0)
ﬁ armcc
(compiler) Executable Blnary
image file program
Scatter loading script (.axf /.elf) Rt image (.bin)
Memory | Armllnk
layout Ilnker)
fromelf
Assembly files (.s) Object files (.0) %7 l:]
ﬁ} armasm ﬁ]

Disassembled

(compiler) code (.txt)

FIGURE 10.1
Example Flow Using ARM Development Tools.
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A Typical Development Flow (continued)

* The scatter-loading script is optional but often required when the
memory map becomes more complex.

* Besides these basic tools, RVDS also contains a large number of
utilities, including an Integrated Development Environment (IDE)
and debuggers.
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Using C
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Using C

* For beginners in embedded programming, using C language for
software development on the Cortex-M3 processor is the best

choice.

* Programming in C with the Cortex-M3 processor is made even
easier as most microcontroller vendors provide device driver
libraries written in C to control peripherals.

* These can then be included into the project.

* Since modern C compilers can generate very efficient code, it is
better to program in C than spending a lot of time to try to develop
complex routines in assembly language, which is error prone and
less portable.
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Using C (continued)

* C has the advantage of being portable and easier for implementing
complex operations, compared with assembly language.

* Since it’s a generic computer language, C does not specify how the
processor is initialized.

* For these areas, tool chains can have different approaches.
* The best way to get started is to look at example codes.

* For users of ARM C compiler products, such as RVDS or Keil RealView
Microcontroller Development Kit (MDK-ARM), a number of Cortex-M3
program examples are already included in the installation.
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Example of a Simple C Program Using
RealView Development Site

* A normal program for the Cortex-M3 contains at least the “main”
program and a vector table.

* Let’s start with the most basic main program that toggles an Light
Emitting Diode (LED):




Example of a Simple C Program Using
RealView Development Site (continued)

jfdefine LED *((volatile unsigned int *)(0xDFFF0O0O0C))

int main (void)

{

it 1; /* 1oop counter for delay function */

volatile int j; /* dummy volatile variable to prevent
C compiler from optimize the delay away */

while (1) {
LED = 0x00; /* toogle LED */
for (i=0;i<10;i++) {j=0;} /* delay */
LED = 0x01; /* toogle LED */
for (i=0;i<10;i++) {j=0;} /* delay */
}

return 0;

}
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Example of a Simple C Program Using
RealView Development Site (continued)

* This file is named “blinky.c.”

* For the vector table, we create a separate C program called
“vectors.c.”

* The file “vectors.c” contains the vector table, as well as a number of
dummy exception handlers (these can be customized for target
application later on):




typedef void(* const ExecFuncPtr)(void) __irq;
extern int _main(void);

/*
* Dummy handlers Exception Handlers
x7
__irq void NMI_Handler(void)
{ while(1l); }
__irq void HardFault_Handler(void)
{ while(1l); }
__irqg void SVC_Handler(void)
{ while(1l); }
__irq void DebugMon_Handler(void)
{ while(l); }
__irqg void PendSV_Handler(void)
{  while(l); }
__irq void SysTick_Handler(void)
{ while(l); }
_irqg void ExtIntO_IRQHandler(void)
{ while(1l); }
__irg void ExtIntl_IRQHandler(void)
{ while(1); }
_irqg void ExtIntZ2_IRQHandler(void)
{ while(1l); }
_irq void ExtInt3_IRQHandler(void)
{ while(1l); }
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f#fpragma arm section rodata="exceptions_area"

ExecFuncPtr exception_table[] = { /* vector table */
(ExecFuncPtr)0x20002000,
(ExecFuncPtr)__main,
NMI_Handler, /* NMI */
HardFault_Handler,
. /* MemManage_Handler in Cortex-M3 */
, /* BusFault_Handler in Cortex-M3 */
/* UsageFault_Handler in Cortex-M3 */

, /* Reserved */

, /* Reserved */

/* Reserved */

, /* Reserved */

SVC_Handler,

0, /* DebugMon_Handler in Cortex-M3 */
0, /* Reserved */

PendSV_Handler,

SysTick_Handler,

(> B o [ oo o

o

/* External Interrupts*/
ExtInt0_IRQHandler,
ExtIntl_IRQHandler,
ExtIntZ2_IRQHandler,
ExtInt3_IRQHandler

5

f#fpragma arm section
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Example of a Simple C Program Using
RealView Development Site (continued)

* Assuming you are using RVDS, you can compile the program using
the following command line:

$> armcc -c -g -W blinky.c -0 blinky.o
$> armcc -c -g -W vectors.c -0 vectors.o

* Then the linker can be used to generate the program image.

* A scatter loading file “led.scat” is used to tell the linker the memory
layout and to put the vector table in the starting of the program
Image.

* The “led.scat” is:
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ffdefine HEAP_BASE 0x20001000

ffdefine STACK_BASE 0x20002000

ffdefine HEAP_SIZE ((STACK_BASE-HEAP_BASE)/2)
ffdefine STACK_SIZE ((STACK_BASE-HEAP_BASE)/2)

LOAD_REGION 0x00000000 0x00200000
{
VECTORS 0x0 0xCO

{
: Provided by the user in vectors.c

* (exceptions_area)
}

CODE OxCO FIXED
{

* (+R0O)
}

DATA 0x20000000 0x00010000

{* (+RW, +Z1)

?: Heap starts at 4KB and grows upwards
ARM_LIB_HEAP HEAP_BASE EMPTY HEAP_SIZE
|

:; Stack starts at the end of the 8KB of RAM
:: And grows downwards for 2KB
ARM_LIB_STACK STACK_BASE EMPTY -STACK_SIZE

{
}
}
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Example of a Simple C Program Using
RealView Development Site (continued)

* And the command line for the linker is

$> armlink -scatter led.scat "--keep=vectors.o(exceptions_area)"
blinky.o vectors.o -o blinky.elf

* The executable image “blinky.elf” is now generated.

* We can convert it to binary file and disassembly file using fromelf.

/* create binary file */

$> fromelf --bin blinky.elf -output blinky.bin
/* Create disassembly output */

$> fromelf -c blinky.elf > Tist.txt

Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Compile the Same Example Using Kell
MDK-ARM

* For users of Keil MDK-ARM, it is possible to compile the same
program as in RVDS.

* However, the command line options and a few symbols in the linker
script (scatter loading file) have to be modified.

* Based on the example in the previous section, scatter loading file
“led.scat” is needed to be modified to
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ffdefine HEAP_BASE 0x20001000

ffdefine STACK_BASE 0x20002000

ffdefine HEAP_SIZE ((STACK_BASE-HEAP_BASE)/2)
fdefine STACK_SIZE ((STACK_BASE-HEAP_BASE)/2)

LOAD_REGION 0x00000000 0x00200000
{
VECTORS 0x0 0xCO
{
; Provided by the user in vectors.c
* (exceptions_area)
}

CODE OxCO FIXED
{

* (+R0O)
}

DATA 0x20000000 0x00010000
{

* (+RW, +ZI)
}

;; Heap starts at 4KB and grows upwards
Heap_Mem HEAP_BASE EMPTY HEAP_SIZE

{

}

:; Stack starts at the end of the 8KB of RAM
:; And grows downwards for 2KB
Stack_Mem STACK_BASE EMPTY -STACK_SIZE
{
}
}
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Compile the Same Example Using Kell
MDK-ARM (continued)

* And the compile sequence can be created in a DOS batch file

SET
SET
SET
SET
SET
SET
SET

PATH=C:\Kei1\ARM\ABIN4OQO\ ;ZPATH%
RVCT40INC=C:\Keil1\ARM\RV3ININC
RVCT40LIB=C:\Keil\ARM\RV31\LIB
CPU_TYPE=Cortex-M3
CPU_VENDOR=ARM
UVZ_TARGET=Target 1
CPU_CLOCK=0x00000000

C:\Keil\ARM\BIN4O\armcc -c¢ -03 -W -g -Otime --device DLM vectors.c
C:\KeiT\ARM\BIN4O\armcc -c -03 -W -g -Otime --device DLM blinky.c
C:\Keil\ARM\BIN4O\armlink --device DLM "--keep=Startup.o(RESET)"

-first=Startup.o(RESET)" -scatter led.scat --map vectors.o

blinky.o -0 blinky.elf
C:\Keil\ARM\BIN4O\fromelf --bin blinky.elf -0 blinky.bin

* In general, it is much easier to use the pVision IDE to create and compile
projects rather than using command lines.
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Accessing Memory-Mapped Registers in C

* There are various methods to access memory-mapped peripheral
registers in C language.
* Method 1: Accessing Peripheral Registers as Pointers.

* Method 2: Accessing Peripheral Registers as Pointers to Elements in a
Data Structure.

* Method 3: Defining Peripheral-Based Address Using Scatter Loading
File.

* For illustration, we will use the System Tick (SYSTICK) Timer in the
Cortex-M3 as an example peripheral to demonstrate different
access methods in C language.

* The SYSTICK is a 24-bit timer which contains only four registers.
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Accessing Memory-Mapped Registers in C
(continued)

Method 1:

* Each register is defined as pointer separately.
* This is illustrated in Figure 10.2.

#define SYSTICK_CTRL (*((volatile unsigned long *)(0XEOQOEQ10)))
#define SYSTICK_LOAD (*((volatile unsigned long *)(0xEQODED14)))
#define SYSTICK_VAL (*{(volatile unsigned long *)(0XEO0QE018)))

#define SYSTICK_CALIB (*((volatile unsigned long *){(0XxE000E0Q1C)))

/* Setup SYSTICK */ xi: CALIB 0XEQOOE0Q1C

SYSTICK_LOAD  OxFFFF; // Set reload value VALUE OXEOQOOEQ18 SYSTICK

SYSTICK_VAL 0x0; // Clear current value Timer

SYSTICK CTRL  0x5; / Enable SYSTICK and select core clock RELOAD OXEQ00E014  registers
| CTAL 0XEOOOE010

FIGURE 10.2
Accessing Peripheral Registers as Pointers.
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Accessing Memory-Mapped Registers in C
(continued)

* Based on the same method, we can define a macro to convert
address values to C pointer.

* The C-code looks a bit different, but the generated code is the same
as previous implementation.

* This is illustrated in Figure 10.3.




Accessing Memory-Mapped Registers in C
(continued)

#define HW_REG(addr) (*((volatile unsigned long *)(addr)))
#define SYSTICK_CTRL OxEO0OEOQ10

#define SYSTICK _LOAD OxEO000EO14

#define SYSTICK_VAL OxEO00EO018

#define SYSTICK _CALIB OXEOOOEQ1C ——___

| - CALIB 0XEO00E01C
I Setup SysTick */ \\» ~ VALUE OXEOOOEQ18  SYSTICK
HW REG(SYSTICK LOAD)  OXFFFF: / Set reload value Timer

— 5
HW REG(SYSTICK VAL)  ox0: / Clear current value RELOAD OXEOOOEO14  registers
HW REG(SYSTICK CTRL) O0x5: //Enable SYSTICK and select core clock |————» CTRL OXEODOEO10

FIGURE 10.3
Alternative Way of Accessing Peripheral Registers as Pointers.
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Accessing Memory-Mapped Registers in C
(continued)

Method 2:

* The registers can be defined as a data structure, and then define a
pointer of the defined structure.

* This is the method used in CMSIS compliant device driver libraries.

* This is illustrated in Figure 10.4.




Accessing Memory-Mapped Registers in C
(continued)

typedef struct

{
volatile unsigned long CTRL;  /* SysTick Control and Status register */ SYSTICK Type
volatile unsigned long LOAD; /* SysTick Reload Value register 1)
volatile unsigned long VAL;  /* SysTick Current Value register  */

volatile unsigned long CALIB; /* SysTick Calibration register */

} SysTick_Type; | CALIB l OxEOQ00EOQ1C
#define SysTick ((SysTick_Type *) 0XE000E010) /* SysTick struct */ T ReloaD ||| oxEocoEo14 regrgtzrrs
I Setup SysTick */ \f CTRL 0xE000E010
SysTick->LOAD  OxFFFF; // Set reload value =

SysTick->VAL  0x0; // Clear current value
SysTick-=CTRL 0x5; // Enable SYSTICK and select core clock

FIGURE 10.4
Accessing Peripheral Registers as Pointers to Elements in a Data Structure.
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Accessing Memory-Mapped Registers in C
(continued)

Method 3:

* This method also uses data structure, but the base address of the
peripheral is defined using a scatter loading file (or linker script)
during linking stage.

* This is illustrated in Figure 10.5.




Accessing Memory-Mapped Registers in C
(continued)

In the C file, define the data structure as

__attribute___ ((zero_init)) struct {
volatile unsigned long CTRL; /* systick control */
volatile unsigned long RELOAD; /* systick reload */

volatile unsigned long VAL; /* systick value */ SYSTICK struct
volatile unsigned long CALIB; /* systick calibration */ o
} systick_struct; -
CALIB 0xEOD0EO1C
VALUE oxEoooE018  SYSTICK
Timer
Then create a scatter loading file to place the data structure RELOAD OXEOOOEO14  registers
to specific address CTRL OxEO00E010

LOAD_FLASH 0x0000

{
' SYSTICK 0xE000E010 UNINIT
{
systick_reg.o ( ZI)\/

}

FIGURE 10.5
Defining Peripheral-Based Address Using Scatter Loading File.
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Accessing Memory-Mapped Registers in C
(continued)

* Method 1 is the simplest, howeuver, it can result in less efficient
code compared with the others as the address value for the
registers are stored separately as constant.

* As a result, the code size can be larger and might be slower as it
requires more accesses to the program memory to set up the
address values.

* However, for peripheral control code that only access to one
register, the efficiency of method 1 is identical to others.
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Accessing Memory-Mapped Registers in C
(continued)

* Method 2 is possibly the most commonly used.

* |t allows the registers in a peripheral to share just one constant for
base address value.

* The immediate offset address mode can be used for access of each
register.

* This is the method used in CMSIS.




Accessing Memory-Mapped Registers in C
(continued)

* Method 3 has the same efficiency as method 2, but it is less
portable due to the use of a scatter loading file (scatter loading file
syntax is tool chain specific).

* Method 3 is required when you are developing a device driver
library for a peripheral that is used in multiple devices, and the base
address of the peripheral is not known until in the linking stage.




Intrinsic Functions

* Use of the C language can often speed up application development,
but in some cases, we need to use some instructions that cannot be
generated using normal C-code.

* Some C compilers provide intrinsic functions for accessing these
special instructions.

* Intrinsic functions are used just like normal C functions.

* For example, ARM compilers (including RealView C Compilers and
Keil MDK-ARM) provide the intrinsic functions listed in Table 10.1
for commonly used instructions.
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Intrinsic Functions (continuead

Table 10.1 Intrinsic Functions Provided in ARM Compilers

Assembly Instructions ARM Compiler Intrinsic Functions

CLZ unsigned char __clz(unsigned int val)
CLREX void __clrex(void)

CPSIDI void __disable_irg(void)

CPSIE | void __enable_irg(void)

CPSID F void __disable_fig(void)

CPSIEF void __enable_fig(void)
LDREX/LDREXB/LDREXH unsigned int __Idrex(volatile void *ptr)
LDRT/LDRBT/LDRSBT/LDRHT/LDRSHT unsigned int __Idrt(const volatile void *ptr)
NOP void __nop(void)

RBIT unsigned int __rbit(unsigned int val)

REV unsigned int __rev(unsigned int val)

ROR unsigned int __ror(unsigned int val, unsigned int shift)
SSAT int __ssat(int val, unsigned int sat)

SEV void __sev(void)

STREX/STREXB/STREXH int __strex(unsigned int val, volatile void *ptr)
STRT/STRBT/STRHT void int __strt{unsigned int val, const volatile void *ptr)
USAT int __usat(unsigned int val, unsigned int sat)
WFE void __ wife(void)

WFI void __wifi(void)

BKPT void __breakpoint(int val)
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Embedded Assembler and Inline
Assembler

* As an alternative to using intrinsic functions, we can also directly
access assembly instructions in C-code.

* This is often necessary in low-level system control or when we need
to implement a timing critical routine and decide to implement it in
assembly for the best performance.

* Most ARM C compilers allow to include assembly code in form of
inline assembler.
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Embedded Assembler and Inline
Assembler (continued)

* In the ARM compiler, assembly code can be added inside the C
program.

* For example, assembly functions can be inserted in C programs this
way:

_asm void SetFaultMask(unsigned int new_value)

{
// Assembly code here

MSR FAULTMASK, new_value // Write new value to FAULTMASK
BX LR // Return to calling program
}
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Cortex Microcontroller Software
Interface Standard (CMSIS)




CMSIS

* The Cortex-M3 microcontrollers are gaining momentum in the
embedded application market, as more and more products
based on the Cortex-M3 processor and software that support
the Cortex-M3 processor are emerging.

* There are also a number of companies providing embedded
software solutions, including codecs, data processing libraries,
and various software and debug solutions.

* The CMSIS was developed by ARM to allow users of the Cortex-M3
microcontrollers to gain the most benefit from all these software
solutions and to allow them to develop their embedded
application quickly and reliably.
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CMSIS (continued)

* The Cortex Microcontroller Software Interface Standard (CMSIS)
was started in 2008 to improve software usability and inter-
operability of ARM microcontroller software.

* It is integrated into the driver libraries provided by silicon vendors,
providing a standardized software interface for the Cortex-M3
processor features, as well as a number of common system and 1/0O
functions.

* The library is also supported by software companies including
embedded OS vendors and compiler vendors.
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CMSIS (continued)

Microcontroller
Software Device driver library hardware

Application |
software  [—_

Cortex-M3/
Emtggded CMSIS | > Cortex-Mo0/
Cortex-M1

/‘
Middleware | —

FIGURE 10.6
CMSIS Provides a Standardized Access Interface for Embedded Software Products.
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CMSIS (continued)

* The aims of CMSIS are to:

improve software portability and reusability

enable software solution suppliers to develop products that can work
seamlessly with device libraries from various silicon vendors

allow embedded developers to develop software quicker with an
easy-to-use and standardized software interface

allow embedded software to be used on multiple compiler products

avoid device driver compatibility issues when using software
solutions from multiple sources
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CMSIS — Areas of Standardization

* The scope of CMSIS involves standardization in the following areas:

* Hardware Abstraction Layer (HAL) for Cortex-M processor registers: This includes
standardized register definitions for NVIC, System Control Block registers, SYSTICK
register, MPU registers, and a number of NVIC and core feature access functions.

» Standardized system exception names: This allows OS and middleware to use system
exceptions easily without compatibility issues.

» Standardized method of header file organization: This makes it easier for users to
learn new Cortex microcontroller products and improve software portability.

 Common method for system initialization: Each Microcontroller Unit (MCU) vendor
provides a SystemiInit() function in their device driver library for essential setup and
configuration, such as initialization of clocks.

* Again, this helps new users to start to use Cortex-M microcontrollers and aids
software portability.
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CMSIS — Areas of Standardization
(continued)

* Standardized intrinsic functions: Intrinsic functions are normally used to
produce instructions that cannot be generated by IEC/ISO C.

* By having standardized intrinsic functions, software reusability and portability are
considerably improved.

* Common access functions for communication: This provides a set of software
interface functions for common communication interfaces including universal
asynchronous receiver/transmitter (UART), Ethernet, and Serial Peripheral

Interface (SPI).

* By having these common access functions in the device driver library, reusability and
portability of embedded software are improved.

e Standardized way for embedded software to determine system clock
jérqquencyé.' A software variable called SystemFrequency is defined in device
river code.

* This allows embedded OS to set up the SYSTICK unit based on the system clock
frequency.
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Organization of CMSIS

User
Real-Time Middleware
RTOS Kernel Components
Core Peripheral Middleware PDgwce
: : eripheral
CMSIS Functions Access Functions Euncions
Peripheral Registers and Interrupt/Exception Vector Definitions
: NVIC
Processor RsTg:T(“:rtl Nested !,ector Debug/Trace
MCU Core el Interrupt Interface
i Controller
FIGURE 10.7
CMSIS Structure.
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Organization of CMSIS (continued)

* The CMSIS is divided into multiple layers as follows:

* Core Peripheral Access Layer

* Name definitions, address definitions, and helper functions to access core registers and
core peripherals

* Middleware Access Layer
* Common method to access peripherals for the software industry
* Targeted communication interfaces include Ethernet, UART, and SPI.

* Allows portable software to perform communication tasks on any Cortex
microcontrollers that support the required communication interface
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Organization of CMSIS (continued)

* Device Peripheral Access Layer (MCU specific)

* Name definitions, address definitions, and driver code to access peripherals
* Access Functions for Peripherals (MCU specific)

* Optional additional helper functions for peripherals

* The role of these layers is summarized in Figure 10.7.
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Using CMSIS

* Since the CMSIS is incorporated inside the device driver library, there is
no special setup requirement for using CMSIS in projects.

* For each MCU device, the MCU vendor provides a header file, which
pulls in additional header files required by the device driver library,

including the Core Peripheral Access Layer defined by ARM (as shown in
Figure 10.8).
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Using CMSIS (continued)

[ <device>.h ]7

~\
core_cm3.h
Y,
N
core_cm3.c
.
~

system_<device>.h

J

[ Startup code files

N
system_<device>.c

Core peripheral
access layer

Core intrinsic function
implementations

Interrupt number and
peripheral registers
definitions

System functions
including initialization

Y,
AN ~,  Device peripheral
Diffe‘rent startup code for Other header files agg_e_ss |alyef and
different tool chain ! a l}lonat_ access
unctions
FIGURE 10.8
CMSIS Files.
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Using CMSIS (continued)

* The file core_cm3.h contains

 the peripheral register definitions and access functions for the Cortex-M3
processor peripherals like NVIC, System Control Block registers, and SYSTICK
registers.

* declaration of CMSIS intrinsic functions to allow C applications to access
instructions that cannot be generated using IEC/ISO C language.

* a function for outputting a debug message via the Instrumentation Trace
Module (ITM).

* The file core_cm3.c contains implementation of CMSIS intrinsic functions
that cannot be implemented in core_cm3.h using simple definitions.
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Using CMSIS (continued)

* The system_<device>.h file contains microcontroller specific interrupt
number definitions, and peripheral register definitions.

* The system <device>.c file contains a microcontroller specific function
called SystemiInit for system initialization.

* In addition, CMSIS compliant device drivers also contain start-up code
(which contains the vector table) for various supported compilers, and
CMSIS version of intrinsic functions to allow embedded software access
to all processor core features on different C compiler products.
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Using CMSIS (continued)

#include "vendor_device.h"™ // For example,
// Tm3s_cmsis.h for LuminaryMicro devices
// LPC17xx.h for NXP devices

// stm32f10x.h for ST devices Common name for
system initialization code

void main(void) {/ (from CMSIS v1.30, this function
SystemInit(); is called from startup code)

NVIC setup b
NVIC_SetPriority(UART1_IRQn, 0x0); }/ 1
NVIC_EnableIRQ(UART1_IRQN);

\\/_ Interrupt numbers defined in
} system_<device>.h
void UART1_IRQHandler {

. Peripheral interrupt names are
device specific, define in device
void SysTick_Handler(void) { specific startup code

System exception handler

names are common to all
Cortex microcontrollers

FIGURE 10.9

CMSIS Example.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

171




Using CMSIS (continued)

* A simple example of using CMSIS in your application development is
shown in Figure 10.9.

* To use the CMSIS to set up interrupts and exceptions, we need to use the
exception/interrupt constants defined in the system <device>.h.

* These exception and interrupt constants are different from the exception

number used in the core internal registers (e.g., Interrupt Program Status
Register [IPSR]).

* For CMSIS, negative numbers are for system exceptions and positive
numbers are for peripheral interrupts.
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Using CMSIS (continued)

* For development of portable code, you should use the core access
functions to access core functionalities and middleware access functions
to access peripheral.

* This allows the porting of software to be minimized between different Cortex
microcontrollers.
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Benefits of CMSIS

* The main advantage is much better software portability and reusability.

* Besides easy migration between different Cortex-M3 microcontrollers, it also allows
software to be quickly ported between Cortex-M3 and other Cortex-M processors, reducing

time to market.

* For embedded OS vendors and middleware providers, by using the CMSIS, their
software products can become compatible with device drivers from multiple
microcontroller vendors, including future microcontroller products that are yet
to be released (see Figure 10.10).

* Without the CMSIS, the software vendors either have to include a small library for Cortex-
M3 core functions or develop multiple configurations of their product so that it can work

with device libraries from different microcontroller vendors.
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Without CMSIS, embedded OS or With CMSIS, embedded OS or
middleware needs to include processor middleware can use standardized
core access functions and might core access functions in the driver library
need to include a few peripheral drivers
FIGURE 10.10

CMSIS Avoids Overlapping Driver Code.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

175



Benefits of CMSIS (continued)

* The CMSIS has a small memory footprint (less than 1 KB for all core access
functions and a few bytes of RAM).

* It also avoids overlapping of core peripheral driver code when reusing software
code from other projects.

* Since CMSIS is supported by multiple compiler vendors, embedded software
can compile and run with different compilers.

* As aresult, embedded OS and middleware can be MCU vendor independent and
compiler tool vendor independent.

* Before availability of CMSIS, intrinsic functions were generally compiler specific and
could cause problems in retargetting the software in a different compiler.
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Benefits of CMSIS (continued)

* Since all CMSIS compliant device driver libraries have a similar structure,
learning to use different Cortex-M3 microcontrollers is even easier as the
software interface has similar look and feel.

* No need to relearn a new application programming interface.

* CMSIS is tested by multiple parties and is Motor Industry Software Reliability
Association (MISRA) compliant, thus reducing the validation effort required for
developing your own NVIC or core feature access functions.
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Using Assembly

Shrishail Bhat, Dept. of ECE, AITM Bhatkal




Using Assembly

For small projects, it is possible to develop the whole application in
assembly language.

* However, this is often much harder for beginners.

* Using assembler, one might be able to get the best optimization,
though it might increase the development time, and it could be
easy to make mistakes.

In addition, handling complex data structures or function library
management can be extremely difficult in assembler.
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Using Assembly (continued)

* Yet even when the C language is used in a project, in some
situations part of the program is implemented in assembly
language as follows:

* Functions that cannot be implemented in C, such as direct
manipulation of stack data or special instructions that cannot be

generated by the C compiler in normal C-code

* Timing-critical routines

* Tight memory requirements, causing part of the program to be written
in assembly to get the smallest memory size
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The Interface between Assembly and C

* In various situations, assembly code and the C program interact.

* For example,

* When embedded assembly (or inline assembler, in the case of the GNU tool
chain) is used in C program code

* When C program code calls a function or subroutine implemented in
assembler in a separate file

* When an assembly program calls a C function or subroutine

* In these cases, it is important to understand how parameters and return
results are passed between the calling program and the function being
called.

* The mechanisms of these interactions are specified in the ARM Architecture
Procedure Call Standard [AAPCS].
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The Interface between Assembly and C
(continued)

* For simple cases, when a calling program needs to pass parameters to a
subroutine or function, it will use registers RO—R3, where RO is the first
parameter, R1 is the second, and so on.

* Similarly, RO is used for returning a value at the end of a function.

* RO-R3 and R12 can be changed by a function or subroutine whereas the
contents of R4—R11 should be restored to the previous state before
entering the function, usually handled by stack PUSH and stack POP.

* If a C function is called by an assembIY code, the effect of a possible
register change to RO—R3 and R12 will need to be taken into account.

* If the contents of these registers are needed at a later stage, these

registers might need to be saved on the stack and restored after the C
function completes.
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Example for Assembly Programming

* Consider a simple program to add first ten integers.

STACK_TOP EQU 0x20002000; constant for SP starting value

AREA |Header Code |, CODE
DCD STACK_TOP ; Stack top
DCD Start : Reset vector

ENTRY : Indicate program execution start here
Start ; Start of main program
: initialize registers

MOV r0, #10 ; Starting loop counter value
MOV rl1, #0 : starting result
: Calculated 10+9+8+...+1
1o0p
ADD rl1, roO : R1 = R1 + RO
SUBS r0, #1 ; Decrement RO, update flag ("S" suffix)
BNE loop ; If result not zero jump to Tloop
: Result is now in Rl
deadloop
B deadloop : Infinite loop
END ;: End of file
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Example for Assembly Programming
(continued)

* This simple program contains the initial stack pointer (SP) value, the
initial program counter (PC) value, and setup registers and then
does the required calculation in a loop.

* Assuming ARM RealView compilation tools are used, this program
can be assembled using

$> armasm --cpu cortex-m3 -o testl.o testl.s
* The -o option specifies the output file name.

* The testl.o is an object file.
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Example for Assembly Programming
(continued)

* We then need to use a linker to create an executable image (ELF).

* This can be done by

$> armlink --rw_base 0x20000000 --ro_base 0x0 --map -o testl.elf testl.o

* Here, --ro-base 0x0 specifies that the read-only region (program
ROM) starts at address 0x0; --rwbase specifies that the read/write
region (data memory) starts at address 0x20000000.

* The --map option creates an image map, which is useful for
understanding the memory layout of the compiled image.
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Example for Assembly Programming
(continued)

* Finally, we need to create the binary image

$> fromelf --bin --output testl.bin testl.elf

* For checking that the image looks like what we wanted, we can also
generate a disassembled code list file by

$> fromelf -c --output testl.list testl.elf

* |f everything works fine, ELF image or binary image can be loaded
into the hardware or instruction set simulator for testing.
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