
Shrishail Bhat, Dept. of ECE, AITM Bhatkal

ARM Cortex-M3 Instruction
Set and Programming

EMBEDDED SYSTEMS (18EC62)

MODULE – 2

1

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Basics

2

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Basic Syntax
• In assembler code, the following instruction formatting is

commonly used:

• The label is optional.
• Some of the instructions might have a label in front of them so

that the address of the instructions can be determined using the
label.

• Then, you will find the opcode (the instruction) followed by a
number of operands.

3

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Basic Syntax
(continued)
• Normally, the first operand is the destination of the operation.

• The number of operands in an instruction depends on the type of
instruction, and the syntax format of the operand can also be
different.
• For example, immediate data are usually in the form #number, as

shown here:

• The text after each semicolon (;) is a comment.
• These comments do not affect the program operation, but they can

make programs easier for humans to understand.

4

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Basic Syntax
(continued)
• Constants can be defined using EQU directive, and then they can be

used in the program.

5

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Basic Syntax
(continued)
• DCB (Define Constant Byte) can be used for byte size constant values, such as

characters, and Define Constant Data (DCD) for word size constant values to
define binary data.

6

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Basic Syntax
(continued)
• A number of data definition directives are available for insertion of

constants inside assembly code.
• For example, DCI (Define Constant Instruction) can be used to code an

instruction if the assembler cannot generate the exact instruction that
you want and if you know the binary code for the instruction.

7

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Use of Suffixes
• In assembler for ARM processors, instructions can be followed by

suffixes, as shown in Table 4.1.

8

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Use of Suffixes
(continued)
• For the Cortex-M3, the conditional execution suffixes are usually

used for branch instructions.

• However, other instructions can also be used with the conditional
execution suffixes if they are inside an IF-THEN instruction block.
• In those cases, the S suffix and the conditional execution suffixes can

be used at the same time.

9

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Unified Assembler
Language
• The Unified Assembler Language (UAL) was developed to allow

selection of 16-bit and 32-bit instructions.
• Supports and gets the best out of the Thumb-2 instruction set.

• With UAL, the syntax of Thumb instructions is now the same as for
ARM instructions.
• Makes it easier to port applications between ARM code and Thumb

code by using the same syntax for both.

10

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Unified Assembler
Language (continued)
• The traditional Thumb syntax can still be used.

• The choice between whether the instructions are interpreted as
traditional Thumb code or the new UAL syntax is normally defined
by the directive in the assembly file.
• For example, with ARM assembler tool, a program code header with

“CODE16” directive implies the code is in the traditional Thumb
syntax, and “THUMB” directive implies the code is in the new UAL
syntax.

11

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Unified Assembler
Language (continued)
• One thing we need to be careful with reusing traditional Thumb is

that some instructions change the flags in APSR, even if the S suffix
is not used.

• However, when the UAL syntax is used, whether the instruction
changes the flag depends on the S suffix.
• For example,

12

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Unified Assembler
Language (continued)
• With the new instructions in Thumb-2 technology, some of the operations can

be handled by either a Thumb instruction or a Thumb-2 instruction.
• For example, R0 = R0 + 1 can be implemented as a 16-bit Thumb instruction or a 32-

bit Thumb-2 instruction.

• With UAL, you can specify which instruction you want by adding suffixes:

13

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Unified Assembler
Language (continued)
• The .W (wide) suffix specifies a 32-bit instruction.
• If no suffix is given, the assembler tool can choose either instruction but

usually defaults to 16-bit Thumb code to get a smaller size.

• Depending on tool support, you may also use the .N (narrow) suffix to
specify a 16-bit Thumb instruction.

• In most cases, applications will be coded in C, and the C compilers will
use 16-bit instructions if possible due to smaller code size.
• However, when the immediate data exceed a certain range or when the

operation can be better handled with a 32-bit Thumb-2 instruction, the 32-
bit instruction will be used.

14

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Unified Assembler
Language (continued)
• The 32-bit Thumb-2 instructions can be half word aligned.
• For example, you can have a 32-bit instruction located in a half word

location.

• Most of the 16-bit instructions can only access registers R0–R7.
• 32-bit Thumb-2 instructions do not have this limitation.

• However, use of PC (R15) might not be allowed in some of the instructions.

15

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Instruction List

16

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

16-Bit Data Processing Instructions

17

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

16-Bit Data Processing Instructions
(continued)

18

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

16-Bit Branch Instructions

19

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

16-Bit Load and Store Instructions

20

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Other 16-Bit Instructions

21

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

32-Bit Data Processing Instructions

22

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

32-Bit Data Processing Instructions
(continued)

23

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

32-Bit Data Processing Instructions
(continued)

24

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

32-Bit Data Processing Instructions
(continued)

25

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

32-Bit Load and Store Instructions

26

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

32-Bit Load and Store Instructions
(continued)

27

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

32-Bit Branch Instructions

28

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Other 32-Bit Instructions

29

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Instruction Descriptions

30

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
• One of the most basic functions in a processor is transfer of data.

• In the Cortex-M3, data transfers can be of one of the following
types:
• Moving data between register and register

• Moving data between memory and register

• Moving data between special register and register

• Moving an immediate data value into a register

31

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)
• The command to move data between registers is MOV (move).
• For example, the instruction

MOV R8, R3

moves data from register R3 to register R8.

• Another instruction can generate the negative value of the
original data; it is called MVN (move NOT).

MVN R8, R3

performs a bitwise logical NOT operation on data from
register R3 and moves it to register R8.

32

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)
• The basic instructions for accessing memory are Load and

Store.

• Load (LDR) transfers data from memory to registers, and
Store (STR) transfers data from registers to memory.

• The transfers can be in different data sizes (byte, half word,
word, and double word), as outlined in Table 4.14.

33

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)

34

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)
• Multiple Load and Store operations can be combined into single instructions

called LDM (Load Multiple) and STM (Store Multiple), as outlined in Table 4.15.

35

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)
• The exclamation mark (!) in the instruction specifies whether the

register Rd should be updated after the instruction is completed.
• For example, if R8 equals 0x8000:

36

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)
• ARM processors also support memory accesses with preindexing and postindexing.

• For preindexing, the register holding the memory address is adjusted.

• The memory transfer then takes place with the updated address.
• For example,

• The use of the “!” indicates the update of base register R1.
• The “!” is optional; without it, the instruction would be just a normal memory transfer with

offset from a base address.

• The preindexing memory access instructions include load and store instructions of
various transfer sizes (see Table 4.16).

37

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)

38

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)
• Postindexing memory access instructions carry out the memory transfer using

the base address specified by the register and then update the address register
afterward.
• For example,

• When a postindexing instruction is used, there is no need to use the “!” sign,
because all postindexing instructions update the base address register.

• Similarly to preindexing, postindexing memory access instructions are available
for different transfer sizes (see Table 4.17).

39

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)

40

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)
• Two other types of memory operation are stack PUSH and stack POP.
• For example,

• Usually a PUSH instruction will have a corresponding POP with the same
register list, but this is not always necessary.
• For example, a common exception is when POP is used as a function return:

• In this case, instead of popping the LR register back and then branching to the
address in LR, we POP the address value directly in the program counter.

41

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)
• To access special registers, we use the instructions MRS and MSR.
• For example,

• Unless you’re accessing the APSR, you can use MSR or MRS to
access other special registers only in privileged mode.

42

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)
• Moving immediate data into a register is a common thing to do.

• For example, you might want to access a peripheral register, so you need
to put the address value into a register beforehand.

• For small values (8 bits or less), you can use MOVS (move).
• For example,

• For a larger value (over 8 bits), you might need to use a Thumb-2 move
instruction.
• For example,

43

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data
(continued)
• Or if the value is 32-bit, you can use two instructions to set the

upper and lower halves:

44

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

LDR and ADR Pseudo-Instructions
• LDR and ADR pseudo-instructions can be used to set registers to a

program address value.

• This is not a real assembler command, but the ARM assembler will
convert it into a PC relative load instruction to produce the required
data.

• To generate 32-bit immediate data, using LDR is recommended
rather than the MOVW.W and MOVT.W combination because it
gives better readability and the assembler might be able to reduce
the memory being used if the same immediate data are reused in
several places of the same program.

45

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

LDR and ADR Pseudo-Instructions
(continued)
• For LDR, if the address is a program address value, the assembler

will automatically set the LSB to 1.
• For example,

• You will find that the LDR instruction will put 0x4001 into R1; the
LSB is set to 1 to indicate that it is Thumb code.

46

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

LDR and ADR Pseudo-Instructions
(continued)
• If address1 is a data address, LSB will not be changed.
• For example,

47

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

LDR and ADR Pseudo-Instructions
(continued)
• For ADR, you can load the address value of a program code into a

register without setting the LSB automatically.
• For example,

• You will get 0x4000 in the ADR instruction.

• Note that there is no equal sign (=) in the ADR statement.

48

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

LDR and ADR Pseudo-Instructions
(continued)
• LDR obtains the immediate data by putting the data in the program

code and uses a PC relative load to get the data into the register.

• ADR tries to generate the immediate value by adding or subtracting
instructions (for example, based on the current PC value).

• As a result, it is not possible to create all immediate values using
ADR, and the target address label must be in a close range.

• However, using ADR can generate smaller code sizes compared with
LDR.

49

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
• The Cortex-M3 provides many different instructions for data processing.

• Many data operation instructions can have multiple instruction formats.
• For example, an ADD instruction can operate between two registers or

between one register and an immediate data value:

• These are all ADD instructions, but they have different syntaxes and binary
coding.

50

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)
• With the traditional Thumb instruction syntax, when 16-bit Thumb

code is used, an ADD instruction can change the flags in the PSR.

• However, 32-bit Thumb-2 code can either change a flag or keep it
unchanged.
• To separate the two different operations, the S suffix should be used if

the following operation depends on the flags:

51

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)
• Aside from ADD instructions, the arithmetic functions that the

Cortex-M3 supports include subtract (SUB), multiply (MUL), and
unsigned and signed divide (UDIV/SDIV).

• Table 4.18 shows some of the most commonly used arithmetic
instructions.

• These instructions can be used with or without the “S” suffix to
determine if the APSR should be updated.
• In most cases, if UAL syntax is selected and if “S” suffix is not used, the 32-bit

version of the instructions would be selected as most of the 16-bit Thumb
instructions update APSR.

52

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)

53

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)
• The Cortex-M3 also supports 32-bit multiply instructions and multiply

accumulate instructions that give 64-bit results.

• These instructions support signed or unsigned values (see Table 4.19).

54

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)
• Another group of data processing instructions are the logical

operations instructions and logical operations such as AND, ORR
(or), and shift and rotate functions.

• Table 4.20 shows some of the most commonly used logical
instructions.

• These instructions can be used with or without the “S” suffix to
determine if the APSR should be updated.
• If UAL syntax is used and if “S” suffix is not used, the 32-bit version of

the instructions would be selected as all of the 16-bit logic operation
instructions update APSR.

55

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)

56

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)
• The Cortex-M3 provides rotate and shift instructions.

• In some cases, the rotate operation can be combined with other
operations (for example, in memory address offset calculation for
load/store instructions).

• For standalone rotate/shift operations, the instructions shown in
Table 4.21 are provided.

• Again, a 32-bit version of the instruction is used if “S” suffix is not
used and if UAL syntax is used.

57

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)

58

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)

59

• In UAL syntax, the rotate and shift operations can also update the
carry flag if the S suffix is used (and always update the carry flag if
the 16-bit Thumb code is used).
• See Figure 4.1.

• If the shift or rotate operation shifts the register position by
multiple bits, the value of the carry flag C will be the last bit that
shifts out of the register.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)

60

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)

61

Why is there rotate right but no rotate left?

• The rotate left operation can be replaced by a rotate right operation
with a different rotate offset.
• For example, a rotate left by 4-bit operation can be written as a rotate

right by 28-bit instruction, which gives the same result and takes the
same amount of time to execute.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)

62

• For conversion of signed data from byte or half word to word, the
Cortex-M3 provides the two instructions shown in Table 4.22.

• Both 16-bit and 32-bit versions are available.
• The 16-bit version can only access low registers.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)

63

• Another group of data processing instructions is used for reversing data bytes in a register (see
Table 4.23).

• These instructions are usually used for conversion between little endian and big endian data.

• See Figure 4.2.

• Both 16-bit and 32-bit versions are available.

• The 16-bit version can only access low registers.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)

64

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data
(continued)

65

• The last group of data processing instructions is for bit field processing.
• They include the instructions shown in Table 4.24.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Call and
Unconditional Branch

66

• The most basic branch instructions are as follows:

• In BX instructions, the LSB of the value contained in the register
determines the next state (Thumb/ARM) of the processor.

• In the Cortex-M3, because it is always in Thumb state, this bit should be
set to 1.
• If it is zero, the program will cause a usage fault exception because it is trying

to switch the processor into ARM state.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Call and
Unconditional Branch (continued)

67

• To call a function, the branch and link instructions should be used.

• With these instructions, the return address will be stored in the link register
(LR) and the function can be terminated using BX LR, which causes program
control to return to the calling process.

• However, when using BLX, make sure that the LSB of the register is 1.
• Otherwise the processor will produce a fault exception because it is an

attempt to switch to the ARM state.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Call and
Unconditional Branch (continued)

68

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Decisions and
Conditional Branches

69

• Most conditional branches in ARM processors use flags in the APSR
to determine whether a branch should be carried out.

• In the APSR, there are five flag bits; four of them are used for
branch decisions, as shown in Table 4.25.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Decisions and
Conditional Branches (continued)

70

• With combinations of the four flags (N, Z, C, and V), 15 branch
conditions are defined, as shown in Table 4.26.

• Using these conditions, branch instructions can be written as, for
example,

• We can also use the Thumb-2 version if your branch target is further
away.
• For example,

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 71

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Decisions and
Conditional Branches (continued)

72

• The defined branch conditions can also be used in IF-THEN-ELSE
structures.
• For example,

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Decisions and
Conditional Branches (continued)

73

• APSR flags can be affected by the following:
• Most of the 16-bit ALU instructions

• 32-bit (Thumb-2) ALU instructions with the S suffix; for example, ADDS.W

• Compare (e.g., CMP) and Test (e.g., TST, TEQ)

• Write to APSR/xPSR directly

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Combined Compare and
Conditional Branch

74

• With ARM architecture v7-M, two new instructions are provided on
the Cortex-M3 to supply a simple compare with zero and
conditional branch operations.
• CBZ (compare and branch if zero)

• CBNZ (compare and branch if nonzero)

• The APSR value is not affected by the CBZ and CBNZ instructions.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Combined Compare and
Conditional Branch (continued)

75

• The compare and branch instructions only support forward
branches. For example,

• This can be compiled into the following:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Combined Compare and
Conditional Branch (continued)

76

• The usage of CBNZ is similar to CBZ, apart from the fact that the branch is
taken if the Z flag is not set (result is not zero). For example,

• This can be compiled into the following:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Conditional Execution
Using IT Instructions

77

• The IT (IF-THEN) block is very useful for handling small conditional
code.

• It avoids branch penalties because there is no change to program
flow.

• It can provide a maximum of four conditionally executed
instructions.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Conditional Execution
Using IT Instructions (continued)

78

• In IT instruction blocks, the first line must be the IT instruction,
detailing the choice of execution, followed by the condition it
checks.

• The first statement after the IT command must be
TRUE-THEN-EXECUTE, which is always written as ITxyz, where T
means THEN and E means ELSE.

• The second through fourth statements can be either THEN (true) or
ELSE (false).

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Conditional Execution
Using IT Instructions (continued)

79

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Conditional Execution
Using IT Instructions (continued)

80

• If a statement is to be executed when <cond> is false, the suffix for the
instruction must be the opposite of the condition.

• For example, the opposite of EQ is NE, the opposite of GT is LE, and so on.

• The following code shows an example of a simple conditional execution:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Conditional Execution
Using IT Instructions (continued)

81

• In assembly,

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Conditional Execution
Using IT Instructions (continued)

82

• We can have fewer than four conditionally executed instructions.
• The minimum is 1.

• We need to make sure the number of T and E occurrences in the IT
instruction matches the number of conditionally executed
instructions after the IT.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Instruction Barrier and
Memory Barrier Instructions

83

• Barrier instructions are needed as memory systems get more and more complex.

• In some cases, if memory barrier instructions are not used, race conditions could
occur.

• For example, if the memory map can be switched by a hardware register, after writing
to the memory switching register, DSB instruction should be used.
• Otherwise, if the write to the memory switching register is buffered and takes a few cycles

to complete, and the next instruction accesses the switched memory region immediately,
the access could be using the old memory map.

• In some cases, this might result in an invalid access if the memory switching and
memory access happen at the same time.
• Using DSB in this case will make sure that the write to the memory map switching register is

completed before a new instruction is executed.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Instruction Barrier and
Memory Barrier Instructions (continued)

84

• The following are the three barrier instructions in the Cortex-M3:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Instruction Barrier and
Memory Barrier Instructions (continued)

85

• The memory barrier instructions can be accessed in C using Cortex
Microcontroller Software Interface Standard (CMSIS) compliant
device driver library as follows:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Instruction Barrier and
Memory Barrier Instructions (continued)

86

• The DSB and ISB instructions can be important for self-modifying code.

• For example, if a program changes its own program code, the next executed
instruction should be based on the updated program.

• However, since the processor is pipelined, the modified instruction location
might have already been fetched.

• Using DSB and then ISB can ensure that the modified program code is fetched
again.

• Architecturally, the ISB instruction should be used after updating the value of
the CONTROL register.
• In the Cortex-M3 processor, this is not strictly required.

• But if we want to make sure our application is portable, we should ensure an
ISB instruction is used after updating to CONTROL register.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Instruction Barrier and
Memory Barrier Instructions (continued)

87

• DMB is very useful for multi-processor systems.

• For example, tasks running on separate processors might use
shared memory to communicate with each other.

• In these environments, the order of memory accesses to the shared
memory can be very important.

• DMB instructions can be inserted between accesses to the shared
memory to ensure that the memory access sequence is exactly the
same as expected.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Saturation Operations

88

• The Cortex-M3 supports two instructions that provide signed and
unsigned saturation operations:
• SSAT (for signed data type)
• USAT (for unsigned data type)

• Saturation is commonly used in signal processing – for example, in signal
amplification.
• When an input signal is amplified, there is a chance that the output will be

larger than the allowed output range.

• If the value is adjusted simply by removing the unused MSB, an
overflowed result will cause the signal waveform to be completely
deformed, as shown in Figure 4.3.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Saturation Operations
(continued)

89

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Saturation Operations
(continued)

90

• The saturation operation does not prevent the distortion of the signal, but at
least the amount of distortion is greatly reduced in the signal waveform.

• The instruction syntax of the SSAT and USAT instructions is as shown in Table
4.28.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Saturation Operations
(continued)

91

• Besides the destination register, the Q-bit in the APSR can also be affected by
the result.

• The Q flag is set if saturation takes place in the operation, and it can be cleared
by writing to the APSR (see Table 4.29).

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Saturation Operations
(continued)

92

• For example, if a 32-bit signed value is to be saturated into a 16-bit
signed value, the following instruction can be used:

• Similarly, if a 32-bit unsigned value is to saturate into a 16-bit
unsigned value, the following instruction can be used:

• This will provide a saturation feature that has the properties shown
in Figure 4.4.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Saturation Operations
(continued)

93

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Saturation Operations
(continued)

94

• For the preceding 16-bit saturation example instruction, the output
values shown in Table 4.30 can be observed.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Several Useful Instructions in the
Cortex-M3

95

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

MSR and MRS

96

• MSR and MRS instructions provide access to the special registers in
the Cortex-M3.

• Syntax:

where <SReg> could be one of the options shown in Table 4.31.

• For example, the following code can be used to set up the process
stack pointer:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

MSR and MRS (continued)

97

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

More on the IF-THEN Instruction Block

98

• The IF-THEN (IT) instructions allow up to four succeeding
instructions (called an IT block) to be conditionally executed.

• They are in the following formats as shown in Table 4.32, where,
• <x> specifies the execution condition for the second instruction

• <y> specifies the execution condition for the third instruction

• <z> specifies the execution condition for the fourth instruction

• <cond> specifies the base condition of the instruction block; the first
instruction following IT executes if <cond> is true

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

More on the IF-THEN Instruction Block
(continued)

99

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

More on the IF-THEN Instruction Block
(continued)

100

• The <cond> part uses the same condition symbols as conditional
branch.
• If “AL” is used as <cond>, then you cannot use “E” in the condition

control as it implies the instruction should never get executed.

• Each of <x>, <y>, and <z> can be either T (THEN) or E (ELSE), which
refers to the base condition <cond>, whereas <cond> uses
traditional syntax such as EQ, NE, GT, or the like.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

More on the IF-THEN Instruction Block
(continued)

101

• Here is an example of IT use:

• This can be written as follows:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

SDIV and UDIV

102

• The syntax for signed and unsigned divide instructions is as follows:

• The result is Rd = Rn/Rm. For example,

• This will give you an R2 result of 60 (0x3C).

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

REV, REVH, and REVSH

103

• REV reverses the byte order in a data word, and REVH reverses the byte
order inside a half word.

• For example, if R0 is 0x12345678,

• After executing the above instructions, R1 will become 0x78563412, and
R2 will be 0x34127856.

• REV and REVH are particularly useful for converting data between big
endian and little endian.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

REV, REVH, and REVSH (continued)

104

• REVSH is similar to REVH except that it only processes the lower half
word, and then it sign extends the result.

• For example, if R0 is 0x33448899,

• After executing the above instruction, R1 will become 0xFFFF9988.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Reverse Bit

105

• The RBIT instruction reverses the bit order in a data word. The syntax is
as follows:

• This instruction is very useful for processing serial bit streams in data
communications. For example, if R0 is 0xB4E10C23 (binary value
1011_0100_1110_0001_0000_1100_0010_0011), then,

• After executing above instruction, R0 will become 0xC430872D (binary
value 1100_0100_0011_0000_1000_0111_0010_1101).

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

SXTB, SXTH, UXTB, and UXTH

106

• The four instructions SXTB, SXTH, UXTB, and UXTH are used to extend a
byte or half word data into a word.

• The syntax of the instructions is as follows:

• For SXTB/SXTH, the data are sign extended using bit[7]/bit[15] of Rn.

• With UXTB and UXTH, the value is zero extended to 32-bit.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

SXTB, SXTH, UXTB, and UXTH (continued)

107

• For example, if R0 is 0x55AA8765:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Bit Field Clear and Bit Field Insert

108

• Bit Field Clear (BFC) clears 1–31 adjacent bits in any position of a register.

• The syntax of the instruction is as follows:

• For example,

• This will give R0 = 0x1234F00F.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Bit Field Clear and Bit Field Insert
(continued)

109

• Bit Field Insert (BFI) copies 1–31 bits (#width) from one register to any
location (#lsb) in another register.

• The syntax is as follows:

• For example,

• This will give R1 = 0x335678CC.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

UBFX and SBFX

110

• UBFX and SBFX are the unsigned and signed bit field extract instructions.

• The syntax of the instructions is as follows:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

UBFX and SBFX (continued)

111

• UBFX extracts a bit field from a register starting from any location
(specified by #lsb) with any width (specified by #width), zero extends it,
and puts it in the destination register.

• For example,

• This will give R1 = 0x000000BC.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

UBFX and SBFX (continued)

112

• Similarly, SBFX extracts a bit field, but its sign extends it before putting it
in a destination register.

• For example,

• This will give R1 = 0xFFFFFFBC.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

LDRD and STRD

113

• The two instructions LDRD and STRD transfer two words of data from or
into two registers.

• The syntax of the instructions is as follows:

where <Rxf> is the first destination/source register and <Rxf2> is the
second destination/source register.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

LDRD and STRD (continued)

114

• For example, the following code reads a 64-bit value located in memory
address 0x1000 into R0 and R1:

• Similarly, we can use STRD to store a 64-bit value in memory.

• In the following example, preindexed addressing mode is used:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Table Branch Byte and Table Branch
Halfword

115

• Table Branch Byte (TBB) and Table Branch Halfword (TBH) are for
implementing branch tables.

• The TBB instruction uses a branch table of byte size offset, and TBH uses
a branch table of half word offset.

• Since the bit 0 of a program counter is always zero, the value in the
branch table is multiplied by two before it’s added to PC.

• Furthermore, because the PC value is the current instruction address
plus four, the branch range for TBB is (2 × 255) + 4 = 514, and the branch
range for TBH is (2 × 65535) + 4 = 131074.

• Both TBB and TBH support forward branch only.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Table Branch Byte and Table Branch
Halfword (continued)

116

• TBB has this general syntax:

where Rn is the base memory offset and Rm is the branch table index.

• The branch table item for TBB is located at Rn + Rm.

• Assuming we used PC for Rn, we can see the operation as shown in
Figure 4.5.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Table Branch Byte and Table Branch
Halfword (continued)

117

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Table Branch Byte and Table Branch
Halfword (continued)

118

• For TBH instruction, the process is similar except the memory location of
the branch table item is located at Rn + 2 x Rm and the maximum branch
offset is higher.

• Again, we assume that Rn is set to PC, as shown in Figure 4.6.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Table Branch Byte and Table Branch
Halfword (continued)

119

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Table Branch Byte and Table Branch
Halfword (continued)

120

• If Rn in the table branch instruction is set to R15, the value used for Rn
will be PC + 4 because of the pipeline in the processor.

• The coding syntax for calculating TBB/TBH branch table content could be
dependent on the development tool.

• When the TBB instruction is executed, the current PC value is at the
address labeled as branchtable (because of the pipeline in the
processor).

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Table Branch Byte and Table Branch
Halfword (continued)

121

• In ARM assembler (armasm), the TBB branch table can be created in the
following way:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Table Branch Byte and Table Branch
Halfword (continued)

122

• Similarly, for TBH instructions, it can be used as follows:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Cortex-M3
Programming

123

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Overview

124

• The Cortex-M3 can be programmed using either assembly
language, C language, or other high-level languages like National
Instruments LabVIEW.

• For most embedded applications using the Cortex-M3 processor,
the software can be written entirely in C language.
• However, some people prefer to use assembly language or a

combination of C and assembly language in their projects.

• The procedure of building and downloading the resultant image
files to the target device is largely dependent on the tool chain
used.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

A Typical Development Flow

125

• Various software programs are available for developing Cortex-M3
applications.

• The concepts of code generation flow in terms of these tools are
similar.

• For the most basic uses, we will need assembler, a C compiler, a
linker, and binary file generation utilities.

• For ARM solutions, the RealView Development Suite (RVDS) or
RealView Compiler Tools (RVCT) provide a file generation flow, as
shown in Figure 10.1.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

A Typical Development Flow (continued)

126

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

A Typical Development Flow (continued)

127

• The scatter-loading script is optional but often required when the
memory map becomes more complex.

• Besides these basic tools, RVDS also contains a large number of
utilities, including an Integrated Development Environment (IDE)
and debuggers.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using C

128

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using C

129

• For beginners in embedded programming, using C language for
software development on the Cortex-M3 processor is the best
choice.

• Programming in C with the Cortex-M3 processor is made even
easier as most microcontroller vendors provide device driver
libraries written in C to control peripherals.
• These can then be included into the project.

• Since modern C compilers can generate very efficient code, it is
better to program in C than spending a lot of time to try to develop
complex routines in assembly language, which is error prone and
less portable.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using C (continued)

130

• C has the advantage of being portable and easier for implementing
complex operations, compared with assembly language.

• Since it’s a generic computer language, C does not specify how the
processor is initialized.
• For these areas, tool chains can have different approaches.

• The best way to get started is to look at example codes.

• For users of ARM C compiler products, such as RVDS or Keil RealView
Microcontroller Development Kit (MDK-ARM), a number of Cortex-M3
program examples are already included in the installation.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Example of a Simple C Program Using
RealView Development Site

131

• A normal program for the Cortex-M3 contains at least the “main”
program and a vector table.

• Let’s start with the most basic main program that toggles an Light
Emitting Diode (LED):

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Example of a Simple C Program Using
RealView Development Site (continued)

132

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Example of a Simple C Program Using
RealView Development Site (continued)

133

• This file is named “blinky.c.”

• For the vector table, we create a separate C program called
“vectors.c.”

• The file “vectors.c” contains the vector table, as well as a number of
dummy exception handlers (these can be customized for target
application later on):

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 134

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 135

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Example of a Simple C Program Using
RealView Development Site (continued)

136

• Assuming you are using RVDS, you can compile the program using
the following command line:

• Then the linker can be used to generate the program image.

• A scatter loading file “led.scat” is used to tell the linker the memory
layout and to put the vector table in the starting of the program
image.

• The “led.scat” is:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 137

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Example of a Simple C Program Using
RealView Development Site (continued)

138

• And the command line for the linker is

• The executable image “blinky.elf” is now generated.

• We can convert it to binary file and disassembly file using fromelf.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Compile the Same Example Using Keil
MDK-ARM

139

• For users of Keil MDK-ARM, it is possible to compile the same
program as in RVDS.

• However, the command line options and a few symbols in the linker
script (scatter loading file) have to be modified.

• Based on the example in the previous section, scatter loading file
“led.scat” is needed to be modified to

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 140

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Compile the Same Example Using Keil
MDK-ARM (continued)

141

• And the compile sequence can be created in a DOS batch file

• In general, it is much easier to use the μVision IDE to create and compile
projects rather than using command lines.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C

142

• There are various methods to access memory-mapped peripheral
registers in C language.
• Method 1: Accessing Peripheral Registers as Pointers.
• Method 2: Accessing Peripheral Registers as Pointers to Elements in a

Data Structure.
• Method 3: Defining Peripheral-Based Address Using Scatter Loading

File.

• For illustration, we will use the System Tick (SYSTICK) Timer in the
Cortex-M3 as an example peripheral to demonstrate different
access methods in C language.

• The SYSTICK is a 24-bit timer which contains only four registers.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C
(continued)

143

Method 1:

• Each register is defined as pointer separately.
• This is illustrated in Figure 10.2.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C
(continued)

144

• Based on the same method, we can define a macro to convert
address values to C pointer.

• The C-code looks a bit different, but the generated code is the same
as previous implementation.
• This is illustrated in Figure 10.3.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C
(continued)

145

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C
(continued)

146

Method 2:

• The registers can be defined as a data structure, and then define a
pointer of the defined structure.

• This is the method used in CMSIS compliant device driver libraries.

• This is illustrated in Figure 10.4.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C
(continued)

147

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C
(continued)

148

Method 3:

• This method also uses data structure, but the base address of the
peripheral is defined using a scatter loading file (or linker script)
during linking stage.
• This is illustrated in Figure 10.5.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C
(continued)

149

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C
(continued)

150

• Method 1 is the simplest, however, it can result in less efficient
code compared with the others as the address value for the
registers are stored separately as constant.

• As a result, the code size can be larger and might be slower as it
requires more accesses to the program memory to set up the
address values.

• However, for peripheral control code that only access to one
register, the efficiency of method 1 is identical to others.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C
(continued)

151

• Method 2 is possibly the most commonly used.

• It allows the registers in a peripheral to share just one constant for
base address value.

• The immediate offset address mode can be used for access of each
register.

• This is the method used in CMSIS.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C
(continued)

152

• Method 3 has the same efficiency as method 2, but it is less
portable due to the use of a scatter loading file (scatter loading file
syntax is tool chain specific).

• Method 3 is required when you are developing a device driver
library for a peripheral that is used in multiple devices, and the base
address of the peripheral is not known until in the linking stage.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Intrinsic Functions

153

• Use of the C language can often speed up application development,
but in some cases, we need to use some instructions that cannot be
generated using normal C-code.

• Some C compilers provide intrinsic functions for accessing these
special instructions.

• Intrinsic functions are used just like normal C functions.

• For example, ARM compilers (including RealView C Compilers and
Keil MDK-ARM) provide the intrinsic functions listed in Table 10.1
for commonly used instructions.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Intrinsic Functions (continued)

154

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Embedded Assembler and Inline
Assembler

155

• As an alternative to using intrinsic functions, we can also directly
access assembly instructions in C-code.

• This is often necessary in low-level system control or when we need
to implement a timing critical routine and decide to implement it in
assembly for the best performance.

• Most ARM C compilers allow to include assembly code in form of
inline assembler.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Embedded Assembler and Inline
Assembler (continued)

156

• In the ARM compiler, assembly code can be added inside the C
program.

• For example, assembly functions can be inserted in C programs this
way:

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Cortex Microcontroller Software
Interface Standard (CMSIS)

157

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

CMSIS
• The Cortex-M3 microcontrollers are gaining momentum in the

embedded application market, as more and more products
based on the Cortex-M3 processor and software that support
the Cortex-M3 processor are emerging.

• There are also a number of companies providing embedded
software solutions, including codecs, data processing libraries,
and various software and debug solutions.

• The CMSIS was developed by ARM to allow users of the Cortex-M3
microcontrollers to gain the most benefit from all these software
solutions and to allow them to develop their embedded
application quickly and reliably.

158

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

CMSIS (continued)
• The Cortex Microcontroller Software Interface Standard (CMSIS)

was started in 2008 to improve software usability and inter-
operability of ARM microcontroller software.

• It is integrated into the driver libraries provided by silicon vendors,
providing a standardized software interface for the Cortex-M3
processor features, as well as a number of common system and I/O
functions.

• The library is also supported by software companies including
embedded OS vendors and compiler vendors.

159

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

CMSIS (continued)

160

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

CMSIS (continued)
• The aims of CMSIS are to:
• improve software portability and reusability

• enable software solution suppliers to develop products that can work
seamlessly with device libraries from various silicon vendors

• allow embedded developers to develop software quicker with an
easy-to-use and standardized software interface

• allow embedded software to be used on multiple compiler products

• avoid device driver compatibility issues when using software
solutions from multiple sources

161

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

CMSIS – Areas of Standardization
• The scope of CMSIS involves standardization in the following areas:
• Hardware Abstraction Layer (HAL) for Cortex-M processor registers: This includes

standardized register definitions for NVIC, System Control Block registers, SYSTICK
register, MPU registers, and a number of NVIC and core feature access functions.

• Standardized system exception names: This allows OS and middleware to use system
exceptions easily without compatibility issues.

• Standardized method of header file organization: This makes it easier for users to
learn new Cortex microcontroller products and improve software portability.

• Common method for system initialization: Each Microcontroller Unit (MCU) vendor
provides a SystemInit() function in their device driver library for essential setup and
configuration, such as initialization of clocks.

• Again, this helps new users to start to use Cortex-M microcontrollers and aids
software portability.

162

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

CMSIS – Areas of Standardization
(continued)
• Standardized intrinsic functions: Intrinsic functions are normally used to

produce instructions that cannot be generated by IEC/ISO C.
• By having standardized intrinsic functions, software reusability and portability are

considerably improved.

• Common access functions for communication: This provides a set of software
interface functions for common communication interfaces including universal
asynchronous receiver/transmitter (UART), Ethernet, and Serial Peripheral
Interface (SPI).
• By having these common access functions in the device driver library, reusability and

portability of embedded software are improved.

• Standardized way for embedded software to determine system clock
frequency: A software variable called SystemFrequency is defined in device
driver code.
• This allows embedded OS to set up the SYSTICK unit based on the system clock

frequency.

163

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Organization of CMSIS

164

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Organization of CMSIS (continued)
• The CMSIS is divided into multiple layers as follows:

• Core Peripheral Access Layer

• Name definitions, address definitions, and helper functions to access core registers and
core peripherals

• Middleware Access Layer

• Common method to access peripherals for the software industry

• Targeted communication interfaces include Ethernet, UART, and SPI.

• Allows portable software to perform communication tasks on any Cortex
microcontrollers that support the required communication interface

165

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Organization of CMSIS (continued)
• Device Peripheral Access Layer (MCU specific)

• Name definitions, address definitions, and driver code to access peripherals

• Access Functions for Peripherals (MCU specific)

• Optional additional helper functions for peripherals

• The role of these layers is summarized in Figure 10.7.

166

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using CMSIS
• Since the CMSIS is incorporated inside the device driver library, there is

no special setup requirement for using CMSIS in projects.

• For each MCU device, the MCU vendor provides a header file, which
pulls in additional header files required by the device driver library,
including the Core Peripheral Access Layer defined by ARM (as shown in
Figure 10.8).

167

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using CMSIS (continued)

168

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using CMSIS (continued)
• The file core_cm3.h contains
• the peripheral register definitions and access functions for the Cortex-M3

processor peripherals like NVIC, System Control Block registers, and SYSTICK
registers.

• declaration of CMSIS intrinsic functions to allow C applications to access
instructions that cannot be generated using IEC/ISO C language.

• a function for outputting a debug message via the Instrumentation Trace
Module (ITM).

• The file core_cm3.c contains implementation of CMSIS intrinsic functions
that cannot be implemented in core_cm3.h using simple definitions.

169

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using CMSIS (continued)
• The system_<device>.h file contains microcontroller specific interrupt

number definitions, and peripheral register definitions.

• The system_<device>.c file contains a microcontroller specific function
called SystemInit for system initialization.

• In addition, CMSIS compliant device drivers also contain start-up code
(which contains the vector table) for various supported compilers, and
CMSIS version of intrinsic functions to allow embedded software access
to all processor core features on different C compiler products.

170

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using CMSIS (continued)

171

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using CMSIS (continued)
• A simple example of using CMSIS in your application development is

shown in Figure 10.9.

• To use the CMSIS to set up interrupts and exceptions, we need to use the
exception/interrupt constants defined in the system_<device>.h.

• These exception and interrupt constants are different from the exception
number used in the core internal registers (e.g., Interrupt Program Status
Register [IPSR]).

• For CMSIS, negative numbers are for system exceptions and positive
numbers are for peripheral interrupts.

172

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using CMSIS (continued)
• For development of portable code, you should use the core access

functions to access core functionalities and middleware access functions
to access peripheral.

• This allows the porting of software to be minimized between different Cortex
microcontrollers.

173

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Benefits of CMSIS
• The main advantage is much better software portability and reusability.

• Besides easy migration between different Cortex-M3 microcontrollers, it also allows
software to be quickly ported between Cortex-M3 and other Cortex-M processors, reducing
time to market.

• For embedded OS vendors and middleware providers, by using the CMSIS, their
software products can become compatible with device drivers from multiple
microcontroller vendors, including future microcontroller products that are yet
to be released (see Figure 10.10).
• Without the CMSIS, the software vendors either have to include a small library for Cortex-

M3 core functions or develop multiple configurations of their product so that it can work
with device libraries from different microcontroller vendors.

174

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Benefits of CMSIS (continued)

175

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Benefits of CMSIS (continued)
• The CMSIS has a small memory footprint (less than 1 KB for all core access

functions and a few bytes of RAM).

• It also avoids overlapping of core peripheral driver code when reusing software
code from other projects.

• Since CMSIS is supported by multiple compiler vendors, embedded software
can compile and run with different compilers.

• As a result, embedded OS and middleware can be MCU vendor independent and
compiler tool vendor independent.

• Before availability of CMSIS, intrinsic functions were generally compiler specific and
could cause problems in retargetting the software in a different compiler.

176

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Benefits of CMSIS (continued)
• Since all CMSIS compliant device driver libraries have a similar structure,

learning to use different Cortex-M3 microcontrollers is even easier as the
software interface has similar look and feel.

• No need to relearn a new application programming interface.

• CMSIS is tested by multiple parties and is Motor Industry Software Reliability
Association (MISRA) compliant, thus reducing the validation effort required for
developing your own NVIC or core feature access functions.

177

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using Assembly

178

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using Assembly

179

• For small projects, it is possible to develop the whole application in
assembly language.
• However, this is often much harder for beginners.

• Using assembler, one might be able to get the best optimization,
though it might increase the development time, and it could be
easy to make mistakes.

• In addition, handling complex data structures or function library
management can be extremely difficult in assembler.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Using Assembly (continued)

180

• Yet even when the C language is used in a project, in some
situations part of the program is implemented in assembly
language as follows:
• Functions that cannot be implemented in C, such as direct

manipulation of stack data or special instructions that cannot be
generated by the C compiler in normal C-code

• Timing-critical routines

• Tight memory requirements, causing part of the program to be written
in assembly to get the smallest memory size

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Interface between Assembly and C

181

• In various situations, assembly code and the C program interact.

• For example,
• When embedded assembly (or inline assembler, in the case of the GNU tool

chain) is used in C program code
• When C program code calls a function or subroutine implemented in

assembler in a separate file
• When an assembly program calls a C function or subroutine

• In these cases, it is important to understand how parameters and return
results are passed between the calling program and the function being
called.

• The mechanisms of these interactions are specified in the ARM Architecture
Procedure Call Standard [AAPCS].

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Interface between Assembly and C
(continued)

182

• For simple cases, when a calling program needs to pass parameters to a
subroutine or function, it will use registers R0–R3, where R0 is the first
parameter, R1 is the second, and so on.

• Similarly, R0 is used for returning a value at the end of a function.

• R0–R3 and R12 can be changed by a function or subroutine whereas the
contents of R4–R11 should be restored to the previous state before
entering the function, usually handled by stack PUSH and stack POP.

• If a C function is called by an assembly code, the effect of a possible
register change to R0–R3 and R12 will need to be taken into account.

• If the contents of these registers are needed at a later stage, these
registers might need to be saved on the stack and restored after the C
function completes.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Example for Assembly Programming

183

• Consider a simple program to add first ten integers.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Example for Assembly Programming
(continued)

184

• This simple program contains the initial stack pointer (SP) value, the
initial program counter (PC) value, and setup registers and then
does the required calculation in a loop.

• Assuming ARM RealView compilation tools are used, this program
can be assembled using

• The -o option specifies the output file name.

• The test1.o is an object file.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Example for Assembly Programming
(continued)

185

• We then need to use a linker to create an executable image (ELF).

• This can be done by

• Here, --ro-base 0x0 specifies that the read-only region (program
ROM) starts at address 0x0; --rwbase specifies that the read/write
region (data memory) starts at address 0x20000000.

• The --map option creates an image map, which is useful for
understanding the memory layout of the compiled image.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Example for Assembly Programming
(continued)

186

• Finally, we need to create the binary image

• For checking that the image looks like what we wanted, we can also
generate a disassembled code list file by

• If everything works fine, ELF image or binary image can be loaded
into the hardware or instruction set simulator for testing.

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

References
1. Joseph Yiu, “The Definitive Guide to the ARM Cortex-M3”, 2nd Edition,

Newnes (Elsevier), 2010.

2. https://www.arm.com

187

https://www.arm.com/

