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Assembly Basics
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Assembler Language: Basic Syntax
• In assembler code, the following instruction formatting is 

commonly used:

• The label is optional. 
• Some of the instructions might have a label in front of them so 

that the address of the instructions can be determined using the 
label.

• Then, you will find the opcode (the instruction) followed by a 
number of operands.
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Assembler Language: Basic Syntax 
(continued)
• Normally, the first operand is the destination of the operation. 

• The number of operands in an instruction depends on the type of 
instruction, and the syntax format of the operand can also be 
different. 
• For example, immediate data are usually in the form #number, as 

shown here:

• The text after each semicolon (;) is a comment. 
• These comments do not affect the program operation, but they can 

make programs easier for humans to understand.
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Assembler Language: Basic Syntax 
(continued)
• Constants can be defined using EQU directive, and then they can be 

used in the program.
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Assembler Language: Basic Syntax 
(continued)
• DCB (Define Constant Byte) can be used for byte size constant values, such as 

characters, and Define Constant Data (DCD) for word size constant values to 
define binary data.
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Assembler Language: Basic Syntax 
(continued)
• A number of data definition directives are available for insertion of 

constants inside assembly code.
• For example, DCI (Define Constant Instruction) can be used to code an 

instruction if the assembler cannot generate the exact instruction that 
you want and if you know the binary code for the instruction.

7



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Use of Suffixes
• In assembler for ARM processors, instructions can be followed by 

suffixes, as shown in Table 4.1.
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Assembler Language: Use of Suffixes 
(continued)
• For the Cortex-M3, the conditional execution suffixes are usually 

used for branch instructions.

• However, other instructions can also be used with the conditional 
execution suffixes if they are inside an IF-THEN instruction block.
• In those cases, the S suffix and the conditional execution suffixes can 

be used at the same time.
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Assembler Language: Unified Assembler 
Language
• The Unified Assembler Language (UAL) was developed to allow 

selection of 16-bit and 32-bit instructions.
• Supports and gets the best out of the Thumb-2 instruction set.

• With UAL, the syntax of Thumb instructions is now the same as for 
ARM instructions.
• Makes it easier to port applications between ARM code and Thumb 

code by using the same syntax for both. 
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Assembler Language: Unified Assembler 
Language (continued)
• The traditional Thumb syntax can still be used. 

• The choice between whether the instructions are interpreted as 
traditional Thumb code or the new UAL syntax is normally defined 
by the directive in the assembly file. 
• For example, with ARM assembler tool, a program code header with 

“CODE16” directive implies the code is in the traditional Thumb 
syntax, and “THUMB” directive implies the code is in the new UAL 
syntax.
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Assembler Language: Unified Assembler 
Language (continued)
• One thing we need to be careful with reusing traditional Thumb is 

that some instructions change the flags in APSR, even if the S suffix 
is not used. 

• However, when the UAL syntax is used, whether the instruction 
changes the flag depends on the S suffix. 
• For example,
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Assembler Language: Unified Assembler 
Language (continued)
• With the new instructions in Thumb-2 technology, some of the operations can 

be handled by either a Thumb instruction or a Thumb-2 instruction. 
• For example, R0 = R0 + 1 can be implemented as a 16-bit Thumb instruction or a 32-

bit Thumb-2 instruction. 

• With UAL, you can specify which instruction you want by adding suffixes:
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Assembler Language: Unified Assembler 
Language (continued)
• The .W (wide) suffix specifies a 32-bit instruction. 
• If no suffix is given, the assembler tool can choose either instruction but 

usually defaults to 16-bit Thumb code to get a smaller size. 

• Depending on tool support, you may also use the .N (narrow) suffix to 
specify a 16-bit Thumb instruction.

• In most cases, applications will be coded in C, and the C compilers will 
use 16-bit instructions if possible due to smaller code size. 
• However, when the immediate data exceed a certain range or when the 

operation can be better handled with a 32-bit Thumb-2 instruction, the 32-
bit instruction will be used.
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Assembler Language: Unified Assembler 
Language (continued)
• The 32-bit Thumb-2 instructions can be half word aligned. 
• For example, you can have a 32-bit instruction located in a half word 

location.

• Most of the 16-bit instructions can only access registers R0–R7.
• 32-bit Thumb-2 instructions do not have this limitation. 

• However, use of PC (R15) might not be allowed in some of the instructions.
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Instruction List
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16-Bit Data Processing Instructions
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16-Bit Data Processing Instructions 
(continued)

18



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

16-Bit Branch Instructions
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16-Bit Load and Store Instructions
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Other 16-Bit Instructions
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32-Bit Data Processing Instructions
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32-Bit Data Processing Instructions 
(continued)
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32-Bit Data Processing Instructions 
(continued)
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32-Bit Data Processing Instructions 
(continued)

25



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

32-Bit Load and Store Instructions
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32-Bit Load and Store Instructions 
(continued)
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32-Bit Branch Instructions
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Other 32-Bit Instructions
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Instruction Descriptions 
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Assembler Language: Moving Data
• One of the most basic functions in a processor is transfer of data. 

• In the Cortex-M3, data transfers can be of one of the following 
types:
• Moving data between register and register

• Moving data between memory and register

• Moving data between special register and register

• Moving an immediate data value into a register
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Assembler Language: Moving Data 
(continued)
• The command to move data between registers is MOV (move). 
• For example, the instruction

MOV R8, R3

moves data from register R3 to register R8.

• Another instruction can generate the negative value of the 
original data; it is called MVN (move NOT).

MVN R8, R3

performs a bitwise logical NOT operation on data from 
register R3 and moves it to register R8.
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Assembler Language: Moving Data 
(continued)
• The basic instructions for accessing memory are Load and 

Store. 

• Load (LDR) transfers data from memory to registers, and 
Store (STR) transfers data from registers to memory. 

• The transfers can be in different data sizes (byte, half word, 
word, and double word), as outlined in Table 4.14.
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Assembler Language: Moving Data 
(continued)
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Assembler Language: Moving Data 
(continued)
• Multiple Load and Store operations can be combined into single instructions 

called LDM (Load Multiple) and STM (Store Multiple), as outlined in Table 4.15.
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Assembler Language: Moving Data 
(continued)
• The exclamation mark (!) in the instruction specifies whether the 

register Rd should be updated after the instruction is completed. 
• For example, if R8 equals 0x8000:
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Assembler Language: Moving Data 
(continued)
• ARM processors also support memory accesses with preindexing and postindexing. 

• For preindexing, the register holding the memory address is adjusted. 

• The memory transfer then takes place with the updated address. 
• For example,

• The use of the “!” indicates the update of base register R1. 
• The “!” is optional; without it, the instruction would be just a normal memory transfer with 

offset from a base address. 

• The preindexing memory access instructions include load and store instructions of 
various transfer sizes (see Table 4.16).
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Assembler Language: Moving Data 
(continued)
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Assembler Language: Moving Data 
(continued)
• Postindexing memory access instructions carry out the memory transfer using 

the base address specified by the register and then update the address register 
afterward. 
• For example,

• When a postindexing instruction is used, there is no need to use the “!” sign, 
because all postindexing instructions update the base address register.

• Similarly to preindexing, postindexing memory access instructions are available 
for different transfer sizes (see Table 4.17).

39



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Moving Data 
(continued)
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Assembler Language: Moving Data 
(continued)
• Two other types of memory operation are stack PUSH and stack POP. 
• For example,

• Usually a PUSH instruction will have a corresponding POP with the same 
register list, but this is not always necessary. 
• For example, a common exception is when POP is used as a function return:

• In this case, instead of popping the LR register back and then branching to the 
address in LR, we POP the address value directly in the program counter.
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Assembler Language: Moving Data 
(continued)
• To access special registers, we use the instructions MRS and MSR. 
• For example,

• Unless you’re accessing the APSR, you can use MSR or MRS to 
access other special registers only in privileged mode.
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Assembler Language: Moving Data 
(continued)
• Moving immediate data into a register is a common thing to do. 

• For example, you might want to access a peripheral register, so you need 
to put the address value into a register beforehand.

• For small values (8 bits or less), you can use MOVS (move). 
• For example,

• For a larger value (over 8 bits), you might need to use a Thumb-2 move 
instruction. 
• For example,
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Assembler Language: Moving Data 
(continued)
• Or if the value is 32-bit, you can use two instructions to set the 

upper and lower halves:
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LDR and ADR Pseudo-Instructions
• LDR and ADR pseudo-instructions can be used to set registers to a 

program address value. 

• This is not a real assembler command, but the ARM assembler will 
convert it into a PC relative load instruction to produce the required 
data. 

• To generate 32-bit immediate data, using LDR is recommended 
rather than the MOVW.W and MOVT.W combination because it 
gives better readability and the assembler might be able to reduce 
the memory being used if the same immediate data are reused in 
several places of the same program.
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LDR and ADR Pseudo-Instructions 
(continued)
• For LDR, if the address is a program address value, the assembler 

will automatically set the LSB to 1. 
• For example,

• You will find that the LDR instruction will put 0x4001 into R1; the 
LSB is set to 1 to indicate that it is Thumb code.
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LDR and ADR Pseudo-Instructions 
(continued)
• If address1 is a data address, LSB will not be changed. 
• For example,
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LDR and ADR Pseudo-Instructions 
(continued)
• For ADR, you can load the address value of a program code into a 

register without setting the LSB automatically. 
• For example,

• You will get 0x4000 in the ADR instruction. 

• Note that there is no equal sign (=) in the ADR statement.
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LDR and ADR Pseudo-Instructions 
(continued)
• LDR obtains the immediate data by putting the data in the program 

code and uses a PC relative load to get the data into the register.

• ADR tries to generate the immediate value by adding or subtracting 
instructions (for example, based on the current PC value). 

• As a result, it is not possible to create all immediate values using 
ADR, and the target address label must be in a close range.

• However, using ADR can generate smaller code sizes compared with 
LDR.
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Assembler Language: Processing Data
• The Cortex-M3 provides many different instructions for data processing. 

• Many data operation instructions can have multiple instruction formats. 
• For example, an ADD instruction can operate between two registers or 

between one register and an immediate data value:

• These are all ADD instructions, but they have different syntaxes and binary 
coding.
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Assembler Language: Processing Data 
(continued)
• With the traditional Thumb instruction syntax, when 16-bit Thumb 

code is used, an ADD instruction can change the flags in the PSR. 

• However, 32-bit Thumb-2 code can either change a flag or keep it 
unchanged. 
• To separate the two different operations, the S suffix should be used if 

the following operation depends on the flags:
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Assembler Language: Processing Data 
(continued)
• Aside from ADD instructions, the arithmetic functions that the 

Cortex-M3 supports include subtract (SUB), multiply (MUL), and 
unsigned and signed divide (UDIV/SDIV). 

• Table 4.18 shows some of the most commonly used arithmetic 
instructions.

• These instructions can be used with or without the “S” suffix to 
determine if the APSR should be updated. 
• In most cases, if UAL syntax is selected and if “S” suffix is not used, the 32-bit 

version of the instructions would be selected as most of the 16-bit Thumb 
instructions update APSR.
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Assembler Language: Processing Data 
(continued)

53



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Processing Data 
(continued)
• The Cortex-M3 also supports 32-bit multiply instructions and multiply 

accumulate instructions that give 64-bit results. 

• These instructions support signed or unsigned values (see Table 4.19).
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Assembler Language: Processing Data 
(continued)
• Another group of data processing instructions are the logical 

operations instructions and logical operations such as AND, ORR 
(or), and shift and rotate functions. 

• Table 4.20 shows some of the most commonly used logical 
instructions. 

• These instructions can be used with or without the “S” suffix to 
determine if the APSR should be updated. 
• If UAL syntax is used and if “S” suffix is not used, the 32-bit version of 

the instructions would be selected as all of the 16-bit logic operation 
instructions update APSR.
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Assembler Language: Processing Data 
(continued)
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Assembler Language: Processing Data 
(continued)
• The Cortex-M3 provides rotate and shift instructions. 

• In some cases, the rotate operation can be combined with other 
operations (for example, in memory address offset calculation for 
load/store instructions). 

• For standalone rotate/shift operations, the instructions shown in 
Table 4.21 are provided. 

• Again, a 32-bit version of the instruction is used if “S” suffix is not 
used and if UAL syntax is used.
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Assembler Language: Processing Data 
(continued)
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Assembler Language: Processing Data 
(continued)

59

• In UAL syntax, the rotate and shift operations can also update the 
carry flag if the S suffix is used (and always update the carry flag if 
the 16-bit Thumb code is used). 
• See Figure 4.1.

• If the shift or rotate operation shifts the register position by 
multiple bits, the value of the carry flag C will be the last bit that 
shifts out of the register.
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Assembler Language: Processing Data 
(continued)
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Assembler Language: Processing Data 
(continued)

61

Why is there rotate right but no rotate left?

• The rotate left operation can be replaced by a rotate right operation 
with a different rotate offset. 
• For example, a rotate left by 4-bit operation can be written as a rotate 

right by 28-bit instruction, which gives the same result and takes the 
same amount of time to execute.
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Assembler Language: Processing Data 
(continued)

62

• For conversion of signed data from byte or half word to word, the 
Cortex-M3 provides the two instructions shown in Table 4.22. 

• Both 16-bit and 32-bit versions are available. 
• The 16-bit version can only access low registers.
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Assembler Language: Processing Data 
(continued)

63

• Another group of data processing instructions is used for reversing data bytes in a register (see 
Table 4.23). 

• These instructions are usually used for conversion between little endian and big endian data. 

• See Figure 4.2. 

• Both 16-bit and 32-bit versions are available. 

• The 16-bit version can only access low registers.
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Assembler Language: Processing Data 
(continued)
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Assembler Language: Processing Data 
(continued)
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• The last group of data processing instructions is for bit field processing. 
• They include the instructions shown in Table 4.24.
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Assembler Language: Call and 
Unconditional Branch

66

• The most basic branch instructions are as follows:

• In BX instructions, the LSB of the value contained in the register 
determines the next state (Thumb/ARM) of the processor. 

• In the Cortex-M3, because it is always in Thumb state, this bit should be 
set to 1. 
• If it is zero, the program will cause a usage fault exception because it is trying 

to switch the processor into ARM state.
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Assembler Language: Call and 
Unconditional Branch (continued)

67

• To call a function, the branch and link instructions should be used.

• With these instructions, the return address will be stored in the link register 
(LR) and the function can be terminated using BX LR, which causes program 
control to return to the calling process.

• However, when using BLX, make sure that the LSB of the register is 1. 
• Otherwise the processor will produce a fault exception because it is an 

attempt to switch to the ARM state.
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Assembler Language: Call and 
Unconditional Branch (continued)
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Assembler Language: Decisions and 
Conditional Branches

69

• Most conditional branches in ARM processors use flags in the APSR 
to determine whether a branch should be carried out. 

• In the APSR, there are five flag bits; four of them are used for 
branch decisions, as shown in Table 4.25.
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Assembler Language: Decisions and 
Conditional Branches (continued)

70

• With combinations of the four flags (N, Z, C, and V ), 15 branch 
conditions are defined, as shown in Table 4.26.

• Using these conditions, branch instructions can be written as, for 
example,

• We can also use the Thumb-2 version if your branch target is further 
away. 
• For example,
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Assembler Language: Decisions and 
Conditional Branches (continued)

72

• The defined branch conditions can also be used in IF-THEN-ELSE 
structures. 
• For example,
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Assembler Language: Decisions and 
Conditional Branches (continued)

73

• APSR flags can be affected by the following:
• Most of the 16-bit ALU instructions

• 32-bit (Thumb-2) ALU instructions with the S suffix; for example, ADDS.W

• Compare (e.g., CMP) and Test (e.g., TST, TEQ)

• Write to APSR/xPSR directly
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Assembler Language: Combined Compare and 
Conditional Branch

74

• With ARM architecture v7-M, two new instructions are provided on 
the Cortex-M3 to supply a simple compare with zero and 
conditional branch operations. 
• CBZ (compare and branch if zero)

• CBNZ (compare and branch if nonzero)

• The APSR value is not affected by the CBZ and CBNZ instructions.
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Assembler Language: Combined Compare and 
Conditional Branch (continued)

75

• The compare and branch instructions only support forward 
branches. For example,

• This can be compiled into the following:



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Combined Compare and 
Conditional Branch (continued)

76

• The usage of CBNZ is similar to CBZ, apart from the fact that the branch is 
taken if the Z flag is not set (result is not zero). For example,

• This can be compiled into the following:
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Assembler Language: Conditional Execution 
Using IT Instructions

77

• The IT (IF-THEN) block is very useful for handling small conditional 
code.

• It avoids branch penalties because there is no change to program 
flow.

• It can provide a maximum of four conditionally executed 
instructions.
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Assembler Language: Conditional Execution 
Using IT Instructions (continued)

78

• In IT instruction blocks, the first line must be the IT instruction, 
detailing the choice of execution, followed by the condition it 
checks. 

• The first statement after the IT command must be 
TRUE-THEN-EXECUTE, which is always written as ITxyz, where T
means THEN and E means ELSE. 

• The second through fourth statements can be either THEN (true) or 
ELSE (false).
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Assembler Language: Conditional Execution 
Using IT Instructions (continued)
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Assembler Language: Conditional Execution 
Using IT Instructions (continued)

80

• If a statement is to be executed when <cond> is false, the suffix for the 
instruction must be the opposite of the condition. 

• For example, the opposite of EQ is NE, the opposite of GT is LE, and so on.

• The following code shows an example of a simple conditional execution:
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Assembler Language: Conditional Execution 
Using IT Instructions (continued)
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• In assembly,
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Assembler Language: Conditional Execution 
Using IT Instructions (continued)

82

• We can have fewer than four conditionally executed instructions. 
• The minimum is 1.

• We need to make sure the number of T and E occurrences in the IT 
instruction matches the number of conditionally executed 
instructions after the IT.
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Assembler Language: Instruction Barrier and 
Memory Barrier Instructions

83

• Barrier instructions are needed as memory systems get more and more complex. 

• In some cases, if memory barrier instructions are not used, race conditions could 
occur.

• For example, if the memory map can be switched by a hardware register, after writing 
to the memory switching register, DSB instruction should be used.
• Otherwise, if the write to the memory switching register is buffered and takes a few cycles 

to complete, and the next instruction accesses the switched memory region immediately, 
the access could be using the old memory map. 

• In some cases, this might result in an invalid access if the memory switching and 
memory access happen at the same time. 
• Using DSB in this case will make sure that the write to the memory map switching register is 

completed before a new instruction is executed.
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Assembler Language: Instruction Barrier and 
Memory Barrier Instructions (continued)
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• The following are the three barrier instructions in the Cortex-M3:
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Assembler Language: Instruction Barrier and 
Memory Barrier Instructions (continued)
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• The memory barrier instructions can be accessed in C using Cortex 
Microcontroller Software Interface Standard (CMSIS) compliant 
device driver library as follows:
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Assembler Language: Instruction Barrier and 
Memory Barrier Instructions (continued)

86

• The DSB and ISB instructions can be important for self-modifying code.

• For example, if a program changes its own program code, the next executed 
instruction should be based on the updated program.

• However, since the processor is pipelined, the modified instruction location 
might have already been fetched.

• Using DSB and then ISB can ensure that the modified program code is fetched 
again.

• Architecturally, the ISB instruction should be used after updating the value of 
the CONTROL register.
• In the Cortex-M3 processor, this is not strictly required.

• But if we want to make sure our application is portable, we should ensure an 
ISB instruction is used after updating to CONTROL register.
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Assembler Language: Instruction Barrier and 
Memory Barrier Instructions (continued)

87

• DMB is very useful for multi-processor systems. 

• For example, tasks running on separate processors might use 
shared memory to communicate with each other.

• In these environments, the order of memory accesses to the shared 
memory can be very important.

• DMB instructions can be inserted between accesses to the shared 
memory to ensure that the memory access sequence is exactly the 
same as expected.
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Assembler Language: Saturation Operations

88

• The Cortex-M3 supports two instructions that provide signed and 
unsigned saturation operations:
• SSAT (for signed data type)
• USAT (for unsigned data type)

• Saturation is commonly used in signal processing – for example, in signal 
amplification. 
• When an input signal is amplified, there is a chance that the output will be 

larger than the allowed output range. 

• If the value is adjusted simply by removing the unused MSB, an 
overflowed result will cause the signal waveform to be completely 
deformed, as shown in Figure 4.3.
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Assembler Language: Saturation Operations 
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• The saturation operation does not prevent the distortion of the signal, but at 
least the amount of distortion is greatly reduced in the signal waveform.

• The instruction syntax of the SSAT and USAT instructions is as shown in Table 
4.28.



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembler Language: Saturation Operations 
(continued)

91

• Besides the destination register, the Q-bit in the APSR can also be affected by 
the result. 

• The Q flag is set if saturation takes place in the operation, and it can be cleared 
by writing to the APSR (see Table 4.29).
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• For example, if a 32-bit signed value is to be saturated into a 16-bit 
signed value, the following instruction can be used:

• Similarly, if a 32-bit unsigned value is to saturate into a 16-bit 
unsigned value, the following instruction can be used:

• This will provide a saturation feature that has the properties shown 
in Figure 4.4.
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• For the preceding 16-bit saturation example instruction, the output 
values shown in Table 4.30 can be observed.
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MSR and MRS
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• MSR and MRS instructions provide access to the special registers in 
the Cortex-M3.

• Syntax:

where <SReg> could be one of the options shown in Table 4.31.

• For example, the following code can be used to set up the process 
stack pointer:
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• The IF-THEN (IT) instructions allow up to four succeeding 
instructions (called an IT block) to be conditionally executed. 

• They are in the following formats as shown in Table 4.32, where,
• <x> specifies the execution condition for the second instruction

• <y> specifies the execution condition for the third instruction

• <z> specifies the execution condition for the fourth instruction

• <cond> specifies the base condition of the instruction block; the first 
instruction following IT executes if <cond> is true
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More on the IF-THEN Instruction Block 
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• The <cond> part uses the same condition symbols as conditional 
branch. 
• If “AL” is used as <cond>, then you cannot use “E” in the condition 

control as it implies the instruction should never get executed.

• Each of <x>, <y>, and <z> can be either T (THEN) or E (ELSE), which 
refers to the base condition <cond>, whereas <cond> uses 
traditional syntax such as EQ, NE, GT, or the like.
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• Here is an example of IT use:

• This can be written as follows:
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• The syntax for signed and unsigned divide instructions is as follows:

• The result is Rd = Rn/Rm. For example,

• This will give you an R2 result of 60 (0x3C).
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• REV reverses the byte order in a data word, and REVH reverses the byte 
order inside a half word. 

• For example, if R0 is 0x12345678,

• After executing the above instructions, R1 will become 0x78563412, and 
R2 will be 0x34127856. 

• REV and REVH are particularly useful for converting data between big 
endian and little endian.
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• REVSH is similar to REVH except that it only processes the lower half 
word, and then it sign extends the result. 

• For example, if R0 is 0x33448899,

• After executing the above instruction, R1 will become 0xFFFF9988.
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• The RBIT instruction reverses the bit order in a data word. The syntax is 
as follows:

• This instruction is very useful for processing serial bit streams in data 
communications. For example, if R0 is 0xB4E10C23 (binary value 
1011_0100_1110_0001_0000_1100_0010_0011), then,

• After executing above instruction, R0 will become 0xC430872D (binary 
value 1100_0100_0011_0000_1000_0111_0010_1101).
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• The four instructions SXTB, SXTH, UXTB, and UXTH are used to extend a 
byte or half word data into a word.

• The syntax of the instructions is as follows:

• For SXTB/SXTH, the data are sign extended using bit[7]/bit[15] of Rn. 

• With UXTB and UXTH, the value is zero extended to 32-bit.
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• For example, if R0 is 0x55AA8765:
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• Bit Field Clear (BFC) clears 1–31 adjacent bits in any position of a register. 

• The syntax of the instruction is as follows:

• For example,

• This will give R0 = 0x1234F00F.
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Bit Field Clear and Bit Field Insert 
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• Bit Field Insert (BFI) copies 1–31 bits (#width) from one register to any 
location (#lsb) in another register. 

• The syntax is as follows:

• For example,

• This will give R1 = 0x335678CC.
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• UBFX and SBFX are the unsigned and signed bit field extract instructions. 

• The syntax of the instructions is as follows:
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UBFX and SBFX (continued)
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• UBFX extracts a bit field from a register starting from any location 
(specified by #lsb) with any width (specified by #width), zero extends it, 
and puts it in the destination register.

• For example,

• This will give R1 = 0x000000BC.
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UBFX and SBFX (continued)
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• Similarly, SBFX extracts a bit field, but its sign extends it before putting it 
in a destination register.

• For example,

• This will give R1 = 0xFFFFFFBC.
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• The two instructions LDRD and STRD transfer two words of data from or 
into two registers. 

• The syntax of the instructions is as follows:

where <Rxf> is the first destination/source register and <Rxf2> is the 
second destination/source register.
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LDRD and STRD (continued)
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• For example, the following code reads a 64-bit value located in memory 
address 0x1000 into R0 and R1:

• Similarly, we can use STRD to store a 64-bit value in memory. 

• In the following example, preindexed addressing mode is used:
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• Table Branch Byte (TBB) and Table Branch Halfword (TBH) are for 
implementing branch tables.

• The TBB instruction uses a branch table of byte size offset, and TBH uses 
a branch table of half word offset.

• Since the bit 0 of a program counter is always zero, the value in the 
branch table is multiplied by two before it’s added to PC. 

• Furthermore, because the PC value is the current instruction address 
plus four, the branch range for TBB is (2 × 255) + 4 = 514, and the branch 
range for TBH is (2 × 65535) + 4 = 131074.

• Both TBB and TBH support forward branch only.
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Table Branch Byte and Table Branch 
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• TBB has this general syntax:

where Rn is the base memory offset and Rm is the branch table index. 

• The branch table item for TBB is located at Rn + Rm. 

• Assuming we used PC for Rn, we can see the operation as shown in 
Figure 4.5.
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Table Branch Byte and Table Branch 
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• For TBH instruction, the process is similar except the memory location of 
the branch table item is located at Rn + 2 x Rm and the maximum branch 
offset is higher. 

• Again, we assume that Rn is set to PC, as shown in Figure 4.6.
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Table Branch Byte and Table Branch 
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• If Rn in the table branch instruction is set to R15, the value used for Rn
will be PC + 4 because of the pipeline in the processor.

• The coding syntax for calculating TBB/TBH branch table content could be 
dependent on the development tool.

• When the TBB instruction is executed, the current PC value is at the 
address labeled as branchtable (because of the pipeline in the 
processor).
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• In ARM assembler (armasm), the TBB branch table can be created in the 
following way:
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• Similarly, for TBH instructions, it can be used as follows:
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• The Cortex-M3 can be programmed using either assembly 
language, C language, or other high-level languages like National 
Instruments LabVIEW.

• For most embedded applications using the Cortex-M3 processor, 
the software can be written entirely in C language.
• However, some people prefer to use assembly language or a 

combination of C and assembly language in their projects.

• The procedure of building and downloading the resultant image 
files to the target device is largely dependent on the tool chain 
used.
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• Various software programs are available for developing Cortex-M3 
applications. 

• The concepts of code generation flow in terms of these tools are 
similar. 

• For the most basic uses, we will need assembler, a C compiler, a 
linker, and binary file generation utilities. 

• For ARM solutions, the RealView Development Suite (RVDS) or 
RealView Compiler Tools (RVCT) provide a file generation flow, as 
shown in Figure 10.1.
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• The scatter-loading script is optional but often required when the 
memory map becomes more complex.

• Besides these basic tools, RVDS also contains a large number of 
utilities, including an Integrated Development Environment (IDE) 
and debuggers.
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• For beginners in embedded programming, using C language for 
software development on the Cortex-M3 processor is the best 
choice. 

• Programming in C with the Cortex-M3 processor is made even 
easier as most microcontroller vendors provide device driver 
libraries written in C to control peripherals. 
• These can then be included into the project. 

• Since modern C compilers can generate very efficient code, it is 
better to program in C than spending a lot of time to try to develop 
complex routines in assembly language, which is error prone and 
less portable.
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Using C (continued)
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• C has the advantage of being portable and easier for implementing 
complex operations, compared with assembly language. 

• Since it’s a generic computer language, C does not specify how the 
processor is initialized. 
• For these areas, tool chains can have different approaches. 

• The best way to get started is to look at example codes. 

• For users of ARM C compiler products, such as RVDS or Keil RealView
Microcontroller Development Kit (MDK-ARM), a number of Cortex-M3 
program examples are already included in the installation.
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• A normal program for the Cortex-M3 contains at least the “main” 
program and a vector table. 

• Let’s start with the most basic main program that toggles an Light 
Emitting Diode (LED):
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Example of a Simple C Program Using 
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• This file is named “blinky.c.” 

• For the vector table, we create a separate C program called 
“vectors.c.”

• The file “vectors.c” contains the vector table, as well as a number of 
dummy exception handlers (these can be customized for target 
application later on):
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• Assuming you are using RVDS, you can compile the program using 
the following command line:

• Then the linker can be used to generate the program image. 

• A scatter loading file “led.scat” is used to tell the linker the memory 
layout and to put the vector table in the starting of the program 
image. 

• The “led.scat” is:
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• And the command line for the linker is

• The executable image “blinky.elf” is now generated. 

• We can convert it to binary file and disassembly file using fromelf.
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• For users of Keil MDK-ARM, it is possible to compile the same 
program as in RVDS.

• However, the command line options and a few symbols in the linker 
script (scatter loading file) have to be modified.

• Based on the example in the previous section, scatter loading file 
“led.scat” is needed to be modified to
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• And the compile sequence can be created in a DOS batch file

• In general, it is much easier to use the μVision IDE to create and compile 
projects rather than using command lines.
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• There are various methods to access memory-mapped peripheral 
registers in C language.
• Method 1: Accessing Peripheral Registers as Pointers.
• Method 2: Accessing Peripheral Registers as Pointers to Elements in a 

Data Structure.
• Method 3: Defining Peripheral-Based Address Using Scatter Loading 

File.

• For illustration, we will use the System Tick (SYSTICK) Timer in the 
Cortex-M3 as an example peripheral to demonstrate different 
access methods in C language. 

• The SYSTICK is a 24-bit timer which contains only four registers.



Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Accessing Memory-Mapped Registers in C 
(continued)

143

Method 1:

• Each register is defined as pointer separately.
• This is illustrated in Figure 10.2.
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• Based on the same method, we can define a macro to convert 
address values to C pointer. 

• The C-code looks a bit different, but the generated code is the same 
as previous implementation. 
• This is illustrated in Figure 10.3.
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Method 2:

• The registers can be defined as a data structure, and then define a 
pointer of the defined structure.

• This is the method used in CMSIS compliant device driver libraries. 

• This is illustrated in Figure 10.4.
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Method 3:

• This method also uses data structure, but the base address of the 
peripheral is defined using a scatter loading file (or linker script) 
during linking stage. 
• This is illustrated in Figure 10.5.
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• Method 1 is the simplest, however, it can result in less efficient 
code compared with the others as the address value for the 
registers are stored separately as constant.

• As a result, the code size can be larger and might be slower as it 
requires more accesses to the program memory to set up the 
address values. 

• However, for peripheral control code that only access to one 
register, the efficiency of method 1 is identical to others.
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• Method 2 is possibly the most commonly used. 

• It allows the registers in a peripheral to share just one constant for 
base address value. 

• The immediate offset address mode can be used for access of each 
register. 

• This is the method used in CMSIS.
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• Method 3 has the same efficiency as method 2, but it is less 
portable due to the use of a scatter loading file (scatter loading file 
syntax is tool chain specific). 

• Method 3 is required when you are developing a device driver 
library for a peripheral that is used in multiple devices, and the base 
address of the peripheral is not known until in the linking stage.
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• Use of the C language can often speed up application development, 
but in some cases, we need to use some instructions that cannot be 
generated using normal C-code. 

• Some C compilers provide intrinsic functions for accessing these 
special instructions. 

• Intrinsic functions are used just like normal C functions. 

• For example, ARM compilers (including RealView C Compilers and 
Keil MDK-ARM) provide the intrinsic functions listed in Table 10.1 
for commonly used instructions.
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• As an alternative to using intrinsic functions, we can also directly 
access assembly instructions in C-code. 

• This is often necessary in low-level system control or when we need 
to implement a timing critical routine and decide to implement it in 
assembly for the best performance. 

• Most ARM C compilers allow to include assembly code in form of 
inline assembler.
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• In the ARM compiler, assembly code can be added inside the C 
program. 

• For example, assembly functions can be inserted in C programs this 
way:
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CMSIS
• The Cortex-M3 microcontrollers are gaining momentum in the 

embedded  application market, as more and more products 
based on the Cortex-M3  processor and software that support 
the Cortex-M3 processor are emerging.

• There are also a number of companies providing embedded 
software  solutions, including codecs, data processing libraries, 
and various software and  debug solutions.

• The CMSIS was developed by ARM to allow users of the Cortex-M3  
microcontrollers to gain the most benefit from all these software 
solutions and  to allow them to develop their embedded 
application quickly and reliably.
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CMSIS (continued)
• The Cortex Microcontroller Software Interface Standard (CMSIS)  

was started in 2008 to improve software usability and inter-
operability of ARM microcontroller software.

• It is integrated into the driver libraries provided by silicon vendors,  
providing a standardized software interface for the Cortex-M3  
processor features, as well as a number of common system and I/O  
functions.

• The library is also supported by software companies including 
embedded OS vendors and compiler vendors.
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CMSIS (continued)
• The aims of CMSIS are to:
• improve software portability and reusability

• enable software solution suppliers to develop products that can  work 
seamlessly with device libraries from various silicon vendors

• allow embedded developers to develop software quicker with an  
easy-to-use and standardized software interface

• allow embedded software to be used on multiple compiler products

• avoid device driver compatibility issues when using software  
solutions from multiple sources
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CMSIS – Areas of Standardization
• The scope of CMSIS involves standardization in the following areas:
• Hardware Abstraction Layer (HAL) for Cortex-M processor registers: This includes  

standardized register definitions for NVIC, System Control Block registers, SYSTICK  
register, MPU registers, and a number of NVIC and core feature access functions.

• Standardized system exception names: This allows OS and middleware to use system 
exceptions easily without compatibility issues.

• Standardized method of header file organization: This makes it easier for users to  
learn new Cortex microcontroller products and improve software portability.

• Common method for system initialization: Each Microcontroller Unit (MCU) vendor
provides a SystemInit() function in their device driver library for essential setup and
configuration, such as initialization of clocks.

• Again, this helps new users to start to use Cortex-M microcontrollers and aids 
software portability.
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CMSIS – Areas of Standardization
(continued)
• Standardized intrinsic functions: Intrinsic functions are normally used to 

produce  instructions that cannot be generated by IEC/ISO C.
• By having standardized intrinsic functions, software reusability and portability are  

considerably improved.

• Common access functions for communication: This provides a set of software  
interface functions for common communication interfaces including universal  
asynchronous receiver/transmitter (UART), Ethernet, and Serial Peripheral 
Interface  (SPI).
• By having these common access functions in the device driver library, reusability  and 

portability of embedded software are improved. 

• Standardized way for embedded software to determine system clock 
frequency: A software variable called SystemFrequency is defined in device 
driver code.
• This allows embedded OS to set up the SYSTICK unit based on the system clock  

frequency.
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Organization of CMSIS (continued)
• The CMSIS is divided into multiple layers as follows:

• Core Peripheral Access Layer

• Name definitions, address definitions, and helper functions to access core registers  and 
core peripherals

• Middleware Access Layer

• Common method to access peripherals for the software industry

• Targeted communication interfaces include Ethernet, UART, and SPI.

• Allows portable software to perform communication tasks on any Cortex  
microcontrollers that support the required communication interface
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Organization of CMSIS (continued)
• Device Peripheral Access Layer (MCU specific)

• Name definitions, address definitions, and driver code to access peripherals

• Access Functions for Peripherals (MCU specific)

• Optional additional helper functions for peripherals

• The role of these layers is summarized in Figure 10.7.
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Using CMSIS
• Since the CMSIS is incorporated inside the device driver library, there is 

no special setup requirement for using CMSIS in projects. 

• For each MCU device, the MCU vendor provides a header file, which 
pulls in additional header files required by the device driver library, 
including the Core Peripheral Access Layer defined by ARM (as shown in 
Figure 10.8).
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Using CMSIS (continued)
• The file core_cm3.h contains 
• the peripheral register definitions and access functions for the Cortex-M3 

processor peripherals like NVIC, System Control Block registers, and SYSTICK 
registers.

• declaration of CMSIS intrinsic functions to allow C applications to access 
instructions that cannot be generated using IEC/ISO C language. 

• a function for outputting a debug message via the Instrumentation Trace 
Module (ITM).

• The file core_cm3.c contains implementation of CMSIS intrinsic functions 
that cannot be implemented in core_cm3.h using simple definitions.
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Using CMSIS (continued)
• The system_<device>.h file contains microcontroller specific interrupt 

number definitions, and peripheral register definitions. 

• The system_<device>.c file contains a microcontroller specific function 
called SystemInit for system initialization.

• In addition, CMSIS compliant device drivers also contain start-up code 
(which contains the vector table) for various supported compilers, and 
CMSIS version of intrinsic functions to allow embedded software access 
to all processor core features on different C compiler products.
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Using CMSIS (continued)
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Using CMSIS (continued)
• A simple example of using CMSIS in your application development is 

shown in Figure 10.9. 

• To use the CMSIS to set up interrupts and exceptions, we need to use the 
exception/interrupt constants defined in the system_<device>.h. 

• These exception and interrupt constants are different from the exception 
number used in the core internal registers (e.g., Interrupt Program Status 
Register [IPSR]). 

• For CMSIS, negative numbers are for system exceptions and positive 
numbers are for peripheral interrupts.
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Using CMSIS (continued)
• For development of portable code, you should use the core access 

functions to access core functionalities and middleware access functions 
to access peripheral. 

• This allows the porting of software to be minimized between different Cortex 
microcontrollers.
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Benefits of CMSIS
• The main advantage is much better software portability and reusability. 

• Besides easy migration between different Cortex-M3 microcontrollers, it also allows 
software to be quickly ported between Cortex-M3 and other Cortex-M processors, reducing 
time to market.

• For embedded OS vendors and middleware providers, by using the CMSIS, their 
software products can become compatible with device drivers from multiple 
microcontroller vendors, including future microcontroller products that are yet 
to be released (see Figure 10.10). 
• Without the CMSIS, the software vendors either have to include a small library for Cortex-

M3 core functions or develop multiple configurations of their product so that it can work 
with device libraries from different microcontroller vendors.
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Benefits of CMSIS (continued)
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Benefits of CMSIS (continued)
• The CMSIS has a small memory footprint (less than 1 KB for all core access 

functions and a few bytes of RAM). 

• It also avoids overlapping of core peripheral driver code when reusing software 
code from other projects.

• Since CMSIS is supported by multiple compiler vendors, embedded software 
can compile and run with different compilers. 

• As a result, embedded OS and middleware can be MCU vendor independent and 
compiler tool vendor independent. 

• Before availability of CMSIS, intrinsic functions were generally compiler specific and 
could cause problems in retargetting the software in a different compiler.
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Benefits of CMSIS (continued)
• Since all CMSIS compliant device driver libraries have a similar structure, 

learning to use different Cortex-M3 microcontrollers is even easier as the 
software interface has similar look and feel.

• No need to relearn a new application programming interface.

• CMSIS is tested by multiple parties and is Motor Industry Software Reliability 
Association (MISRA) compliant, thus reducing the validation effort required for 
developing your own NVIC or core feature access functions.
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Using Assembly
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• For small projects, it is possible to develop the whole application in 
assembly language. 
• However, this is often much harder for beginners. 

• Using assembler, one might be able to get the best optimization, 
though it might increase the development time, and it could be 
easy to make mistakes. 

• In addition, handling complex data structures or function library 
management can be extremely difficult in assembler.
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Using Assembly (continued)
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• Yet even when the C language is used in a project, in some 
situations part of the program is implemented in assembly 
language as follows:
• Functions that cannot be implemented in C, such as direct 

manipulation of stack data or special instructions that cannot be 
generated by the C compiler in normal C-code

• Timing-critical routines

• Tight memory requirements, causing part of the program to be written 
in assembly to get the smallest memory size
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The Interface between Assembly and C
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• In various situations, assembly code and the C program interact. 

• For example,
• When embedded assembly (or inline assembler, in the case of the GNU tool 

chain) is used in C program code
• When C program code calls a function or subroutine implemented in 

assembler in a separate file
• When an assembly program calls a C function or subroutine

• In these cases, it is important to understand how parameters and return 
results are passed between the calling program and the function being 
called. 

• The mechanisms of these interactions are specified in the ARM Architecture 
Procedure Call Standard [AAPCS].
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The Interface between Assembly and C 
(continued)

182

• For simple cases, when a calling program needs to pass parameters to a 
subroutine or function, it will use registers R0–R3, where R0 is the first 
parameter, R1 is the second, and so on. 

• Similarly, R0 is used for returning a value at the end of a function.

• R0–R3 and R12 can be changed by a function or subroutine whereas the 
contents of R4–R11 should be restored to the previous state before 
entering the function, usually handled by stack PUSH and stack POP.

• If a C function is called by an assembly code, the effect of a possible 
register change to R0–R3 and R12 will need to be taken into account.

• If the contents of these registers are needed at a later stage, these 
registers might need to be saved on the stack and restored after the C 
function completes.
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• Consider a simple program to add first ten integers.
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Example for Assembly Programming 
(continued)
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• This simple program contains the initial stack pointer (SP) value, the 
initial program counter (PC) value, and setup registers and then 
does the required calculation in a loop.

• Assuming ARM RealView compilation tools are used, this program 
can be assembled using

• The -o option specifies the output file name. 

• The test1.o is an object file.
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Example for Assembly Programming 
(continued)
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• We then need to use a linker to create an executable image (ELF). 

• This can be done by

• Here, --ro-base 0x0 specifies that the read-only region (program 
ROM) starts at address 0x0; --rwbase specifies that the read/write 
region (data memory) starts at address 0x20000000. 

• The --map option creates an image map, which is useful for 
understanding the memory layout of the compiled image.
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Example for Assembly Programming 
(continued)
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• Finally, we need to create the binary image

• For checking that the image looks like what we wanted, we can also 
generate a disassembled code list file by

• If everything works fine, ELF image or binary image can be loaded 
into the hardware or instruction set simulator for testing.
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