
Shrishail Bhat, Dept. of ECE, AITM Bhatkal

ARM – 32-Bit
Microcontroller

EMBEDDED SYSTEMS (18EC62)

MODULE – 1

1

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

What is ARM?
• ARM is a 32-bit reduced instruction set computer (RISC)

instruction set architecture (ISA) developed by ARM
Holdings.

• It was named the Advanced RISC Machine, and before that,
the Acorn RISC Machine.

2

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

What is the ARM Cortex-M3 Processor?
• The ARM Cortex-M3 processor, the first of the Cortex generation of

processors released by ARM in 2006, was primarily designed to
target the 32-bit microcontroller market.

• The Cortex-M3 processor provides excellent performance at low
gate count and comes with many new features previously available
only in high-end processors.

3

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Background of ARM
• ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint

venture of Apple Computer, Acorn Computer Group, and VLSI
Technology.

• In 1991, ARM introduced the ARM6 processor family.
• VLSI became the initial licensee.

• Subsequently, additional companies, including Texas Instruments, NEC,
Sharp, and ST Microelectronics, licensed the ARM processor designs,
extending the applications of ARM processors into mobile phones, computer
hard disks, personal digital assistants (PDAs), home entertainment systems,
and many other consumer products.

4

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Background of ARM (continued)
• ARM does not manufacture processors or sell the chips directly.

• Instead, ARM licenses the processor designs to business partners, including
a majority of the world’s leading semiconductor companies.

• Based on the ARM low-cost and power-efficient processor designs, these
partners create their processors, microcontrollers, and system-on-chip
solutions.

• This business model is commonly called intellectual property (IP) licensing.

• In addition to processor designs, ARM also licenses systems-level IP and
various software IPs.
• To support these products, ARM has developed a strong base of development

tools, hardware, and software products to enable partners to develop their own
products.

5

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 6

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Architecture Versions
• Classic Processors

• ARM Cortex-A Processors

• ARM Cortex-R Processors

• ARM Cortex-M Processors

7

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

ARM7
• The Arm7TDMI-S is an excellent workhorse processor capable of a

wide array of applications.

• Traditionally used in mobile handsets, the processor is now broadly
in many non-mobile applications.

8

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

ARM9
• The Arm9 family includes three processors:

• Arm968E-S is the smallest and lowest-power Arm9 processor, built
with interfaces for Tightly Coupled Memory and aimed at real-time
applications.

• Arm946E-S is a real-time orientated processor with optional cache
interfaces, a full Memory Protection Unit, and Tightly Coupled
Memory.

• Arm926EJ-S is the entry point processor capable of supporting full
Operating Systems including Linux, WindowsCE, and Symbian.

9

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

ARM11
• The Arm11 family includes four processors:

• Arm11MPCore introduced multicore technology and is still used in a wide
range of applications.

• Arm1176JZ(F)-S is the highest-performance single-core processor in the Classic
Arm family. It also introduced TrustZone technology to enable secure execution
outside of the reach of malicious code.

• Arm1156T2(F)-S is the highest-performance processor in the real-time Classic
Arm family.

• Arm1136J(F)-S is very similar to Arm926EJ-S, but includes an extended
pipeline, basic SIMD (Single Instruction Multiple Data) instructions, and
improved frequency and performance.

10

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Development of the ARM Architecture

11

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

ARM Cortex Family

12

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

ARM Cortex Processors
• Cortex-A Series
• Designed for high-performance open application platforms

• Cortex-R Series
• Designed for high-end embedded systems in which real-time

performance is needed

• Cortex-M Series
• Designed for deeply embedded microcontroller-type systems

13

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

A Profile (ARMv7-A)
• Application processors which are designed to handle complex

applications such as high-end embedded operating systems (OSs)
(e.g., Symbian, Linux, and Windows Embedded).

• These processors requiring the highest processing power, virtual
memory system support with memory management units (MMUs),
and, optionally, enhanced Java support and a secure program
execution environment.

• Example products include high-end mobile phones and electronic
wallets for financial transactions.

14

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

R Profile (ARMv7-R)
• Real-time, high-performance processors targeted primarily at the

higher end of the real-time market

• Suitable for those applications, such as high-end breaking systems
and hard drive controllers, in which high processing power and high
reliability are essential and for which low latency is important.

15

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

M Profile (ARMv7-M)
• Processors targeting low-cost applications in which processing

efficiency is important and cost, power consumption, low interrupt
latency, and ease of use are critical, as well as industrial control
applications, including real-time control systems.

• The Cortex processor families are the first products developed on
architecture v7, and the Cortex-M3 processor is based on one
profile of the v7 architecture, called ARM v7-M, an architecture
specification for microcontroller products.

16

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Evolution of ARM Processor Architecture

17

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Evolution of ARM Processor Architecture
(continued)

18

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Evolution of ARM Processor Architecture
(continued)

19

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Instruction Set Development
• Historically (since ARM7TDMI), two different instruction sets are

supported on the ARM processor:
• The ARM instructions that are 32 bits and Thumb instructions that are

16 bits.

• During program execution, the processor can be dynamically
switched between the ARM state and the Thumb state to use either
one of the instruction sets.

• The Thumb instruction set provides only a subset of the ARM
instructions, but it can provide higher code density.
• It is useful for products with tight memory requirements.

20

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Instruction Set Development (continued)
• As the architecture version has been updated, extra instructions

have been added to both ARM instructions and Thumb instructions.

• In 2003, ARM announced the Thumb-2 instruction set, which is a
new superset of Thumb instructions that contains both 16-bit and
32-bit instructions.

21

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Thumb-2 Technology and Instruction
Set Architecture
• The Thumb-2 technology extended the Thumb Instruction Set

Architecture (ISA) into a highly efficient and powerful instruction
set that delivers significant benefits in terms of ease of use, code
size, and performance.

• The extended instruction set in Thumb-2 is a superset of the
previous 16-bit Thumb instruction set, with additional 16-bit
instructions alongside 32-bit instructions.

• It allows more complex operations to be carried out in the Thumb
state, thus allowing higher efficiency by reducing the number of
states switching between ARM state and Thumb state.

22

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Thumb-2 Technology and Instruction
Set Architecture (continued)

23

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Thumb-2 Technology and Instruction
Set Architecture (continued)
• The Cortex-M3 supports only the Thumb-2 (and traditional Thumb)

instruction set.

• Instead of using ARM instructions for some operations, as in
traditional ARM processors, it uses the Thumb-2 instruction set for
all operations.

• As a result, the Cortex-M3 processor is not backward compatible
with traditional ARM processors.

24

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Thumb-2 Technology and Instruction
Set Architecture (continued)
• With support for both 16-bit and 32-bit instructions in the Thumb-2

instruction set, there is no need to switch the processor between
Thumb state (16-bit instructions) and ARM state (32-bit
instructions).

• In the Cortex-M3 processor, 32-bit instructions can be mixed with
16-bit instructions without switching state, getting high code
density and high performance with no extra complexity.

• The Thumb-2 instruction set is a very important feature of the
ARMv7 architecture.

25

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Cortex-M3 Processor Applications
• Low-cost microcontrollers:
• The Cortex-M3 processor is ideally suited for low-cost microcontrollers, which

are commonly used in consumer products, from toys to electrical appliances.
• It is a highly competitive market due to the many well-known 8-bit and 16-bit

microcontroller products on the market.
• Its lower power, high performance, and ease-of-use advantages enable

embedded developers to migrate to 32-bit systems and develop products with
the ARM architecture.

• Automotive:
• The Cortex-M3 processor has very high-performance efficiency and low

interrupt latency, allowing it to be used in real-time systems.
• The Cortex-M3 processor supports up to 240 external vectored interrupts, with

a built-in interrupt controller with nested interrupt supports and an optional
MPU, making it ideal for highly integrated and cost-sensitive automotive
applications.

26

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Cortex-M3 Processor Applications
(continued)
• Data communications:
• The processor’s low power and high efficiency, coupled with

instructions in Thumb-2 for bit-field manipulation, make the
Cortex-M3 ideal for many communications applications, such as
Bluetooth and ZigBee.

• Industrial control:
• In industrial control applications, simplicity, fast response, and

reliability are key factors.
• Again, the Cortex-M3 processor’s interrupt feature, low interrupt

latency, and enhanced fault-handling features make it a strong
candidate in this area.

27

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Cortex-M3 Processor Applications
(continued)
• Consumer products:
• In many consumer products, a high-performance microprocessor

(or several of them) is used.

• The Cortex-M3 processor, being a small processor, is highly
efficient and low in power and supports an MPU enabling
complex software to execute while providing robust memory
protection

28

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Advantages of Cortex-M3 Processor
• Greater performance efficiency: Allows more work to be done without increasing the

frequency or power requirements

• Low power consumption: Enables longer battery life, especially critical in portable
products

• Enhanced determinism: Guarantees that critical tasks and interrupts are serviced as
quickly as possible and in a known number of cycles

• Improved code density: Ensures that code fits in even the smallest memory footprints

• Ease of use: Provides easier programmability and debugging for the growing number
of 8-bit and 16-bit users migrating to 32 bits

• Lower cost solutions: Reduces 32-bit-based system costs close to those of legacy 8-bit
and 16-bit devices and enabling low-end, 32-bit microcontrollers to be priced at less
than US$1 for the first time

• Wide choice of development tools: From low-cost or free compilers to full-featured
development suites from many development tool vendors

29

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Architecture of ARM
Cortex-M3

30

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Architecture of ARM Cortex-M3

31

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Architecture of ARM Cortex-M3
(continued)
• The Cortex-M3 is a 32-bit microprocessor.

• It has a 32-bit data path, a 32-bit register bank, and 32-bit memory interfaces.

• The processor has a Harvard architecture, which means that it has a separate
instruction bus and data bus.
• This allows instructions and data accesses to take place at the same time.

• The performance of the processor increases because data accesses do not affect the
instruction pipeline.

• This feature results in multiple bus interfaces on Cortex-M3, each with optimized usage and
the ability to be used simultaneously.

• However, the instruction and data buses share the same memory space (a
unified memory system).
• In other words, you cannot get 8 GB of memory space just because you have separate bus

interfaces.

32

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Architecture of ARM Cortex-M3
(continued)
• For complex applications that require more memory system features, the

Cortex-M3 processor has an optional Memory Protection Unit (MPU), and it is
possible to use an external cache if it’s required.

• Both little endian and big endian memory systems are supported.

• The Cortex-M3 processor includes a number of fixed internal debugging
components.
• These components provide debugging operation supports and features, such as

breakpoints and watchpoints.

• In addition, optional components provide debugging features, such as
instruction trace, and various types of debugging interfaces.

33

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Features of ARM Cortex-M3
• Three-stage pipeline design

• Harvard bus architecture with unified memory space: instructions and data use
the same address space

• 32-bit addressing, supporting 4GB of memory space

• On-chip bus interfaces based on ARM AMBA (Advanced Microcontroller Bus
Architecture) Technology, which allow pipelined bus operations for higher
throughput

• An interrupt controller called NVIC (Nested Vectored Interrupt Controller)
supporting up to 240 interrupt requests and from 8 to 256 interrupt priority
levels (dependent on the actual device implementation)

34

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Features of ARM Cortex-M3 (continued)
• Support for various features for OS (Operating System) implementation such as

a system tick timer, shadowed stack pointer

• Sleep mode support and various low power features

• Support for an optional MPU (Memory Protection Unit) to provide memory
protection features like programmable memory, or access permission control

• Support for bit-data accesses in two specific memory regions using a feature
called Bit Band

• The option of being used in single processor or multi-processor designs

35

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Registers
• The Cortex-M3 processor has registers R0 through R15 and a

number of special registers.
• R0-R12: General-Purpose Registers

• R13: Stack Pointer

• R14: Link Register

• R15: Program Counter

36

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 37

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Registers (continued)
• R0-R12: General-Purpose Registers
• R0-R12 are 32-bit general-purpose registers for data operations.
• R0-R7
• The R0 through R7 general purpose registers are also called low registers.

• They can be accessed by all 16-bit Thumb instructions and all 32-bit Thumb-2 instructions.

• These registers are all 32 bits.

• The reset value is unpredictable

• R8-R12
• The R8 through R12 registers are also called high registers.

• They are accessible by all Thumb-2 instructions but not by all 16-bit Thumb instructions.

• These registers are all 32 bits

• The reset value is unpredictable.

38

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Registers (continued)
• R13: Stack Pointer
• The Cortex-M3 contains two stack pointers (SPs).

• They are banked so that only one is visible at a time.
• This duality allows two separate stack memories to be set up.

• The lowest 2 bits of the stack pointers are always 0, which means they are
always word aligned.

39

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Registers (continued)
• R13: Stack Pointer (continued)

• The two SPs are as follows:

• Main Stack Pointer (MSP) or SP_main:

• This is the default SP.

• It is used by the operating system (OS) kernel, exception handlers, and all
application codes that require privileged access.

• Process Stack Pointer (PSP) or SP_process:

• This is used by the user (base-level) application code (when not running an
exception handler).

• When using the register name R13, we can only access the current SP; the
other one is inaccessible unless we use special instructions MSR and MRS.

40

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 41

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Registers (continued)
• R13: Stack Pointer (continued)
• It is not necessary to use both SPs.

• Simple applications can rely purely on the MSP.

• In the Cortex-M3, the instructions for accessing stack memory are PUSH and
POP.

• The assembly language syntax is as follows

• PUSH and POP are usually used to save register contents to stack memory at
the start of a subroutine and then restore the registers from stack at the end
of the subroutine.

42

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Registers (continued)
• R13: Stack Pointer (continued)
• We can PUSH or POP multiple registers in one instruction:

• Instead of using R13, you can use SP in program codes.

• Because register PUSH and POP operations are always word aligned (their
addresses must be 0x0, 0x4, 0x8, ...), the SP/R13 bit 0 and bit 1 are
hardwired to 0 and always read as zero (RAZ).

43

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Registers (continued)
• R14: Link Register
• Inside an assembly program, we can write it as either R14 or LR.

• LR is used to store the return program counter (PC) when a subroutine or
function is called.

• E.g.: when we’re using the branch and link (BL) instruction:

44

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Registers (continued)
• R14: Link Register (continued)
• Despite the fact that bit 0 of the PC is always 0 (because instructions are

word aligned or half word aligned), the LR bit 0 is readable and writable.

• This is because in the Thumb instruction set, bit 0 is often used to indicate
ARM/Thumb states.

• To allow the Thumb-2 program for the Cortex-M3 to work with other ARM
processors that support the Thumb-2 technology, this least significant bit
(LSB) is writable and readable.

45

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Registers (continued)
• R15: Program Counter
• The program counter is the current program address.

• This register can be written to control the program flow.

• It can be accessed in assembler code by either R15 or PC.

• Because of the pipelined nature of the Cortex-M3 processor, when you read
this register, you will find that the value is different than the location of the
executing instruction, normally by 4.
• For example:

46

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Registers (continued)
• R15: Program Counter (continued)
• Because an instruction address must be half word aligned, the LSB (bit 0) of

the PC read value is always 0.

• However, in branching, either by writing to PC or using branch instructions,
the LSB of the target address should be set to 1 because it is used to indicate
the Thumb state operations.

• If it is 0, it can imply trying to switch to the ARM state and will result in a
fault exception in the Cortex-M3.

47

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Special Registers
• The Cortex-M3 processor also has a number of special registers.

• They are as follows:

• Program Status Registers (PSRs)

• Interrupt Mask Registers (PRIMASK, FAULTMASK, and BASEPRI)

• Control Register (CONTROL)

• These registers have special functions and can be accessed only by
special instructions.

• They cannot be used for normal data processing.

48

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Special Registers (continued)

49

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Special Registers (continued)
• Special registers can only be accessed via MSR and MRS

instructions; they do not have memory addresses.

50

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Program Status Registers
• The PSRs are subdivided into three status registers:
• Application Program Status register (APSR)

• Interrupt Program Status register (IPSR)

• Execution Program Status register (EPSR)

• The three PSRs can be accessed together or separately using the
special register access instructions MSR and MRS.

• When they are accessed as a collective item, the name xPSR is
used.

51

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Program Status Registers (continued)
• You can read the PSRs using the MRS instruction.

• You can also change the APSR using the MSR instruction, but EPSR
and IPSR are read-only.

• For example:

52

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Program Status Registers (continued)

53

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Program Status Registers (continued)
• In ARM assembler, when accessing xPSR (all three PSRs as one), the symbol PSR

is used:

• The descriptions for the bit fields in PSR are shown in Table 3.1.

54

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Program Status Registers (continued)
• If you compare this with the Current Program Status register (CPSR) in ARM7, you might find

that some bit fields that were used in ARM7 are gone.
• The Mode (M) bit field is gone because the Cortex-M3 does not have the operation mode as defined

in ARM7.

• Thumb-bit (T) is moved to bit 24.

• Interrupt status (I and F) bits are replaced by the new interrupt mask registers (PRIMASKs), which are
separated from PSR.

• For comparison, the CPSR in traditional ARM processors is shown in Figure 3.5.

55

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Interrupt Mask Registers
• The PRIMASK, FAULTMASK, and BASEPRI registers are used to disable

exceptions.

• The PRIMASK and BASEPRI registers are useful for temporarily disabling
interrupts in timing-critical tasks.

• An OS could use FAULTMASK to temporarily disable fault handling when
a task has crashed.
• In this scenario, a number of different faults might be taking place when a

task crashes.
• Once the core starts cleaning up, it might not want to be interrupted by

other faults caused by the crashed process.
• Therefore, the FAULTMASK gives the OS kernel time to deal with fault

conditions.

56

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Interrupt Mask Registers (continued)

57

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Interrupt Mask Registers (continued)
• To access the PRIMASK, FAULTMASK, and BASEPRI registers, a

number of functions are available in the device driver libraries
provided by the microcontroller vendors.

• For example, the following:

58

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Interrupt Mask Registers (continued)
• In assembly language, the MRS and MSR instructions are used.

• For example:

• The PRIMASK, FAULTMASK, and BASEPRI registers cannot be set in the
user access level.

59

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Control Register
• The control register is used to define the privilege level and the SP

selection.

• This register has 2 bits, as shown in Table 3.3.

60

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Control Register (continued)
• CONTROL[1]
• In the Cortex-M3, the CONTROL[1] bit is always 0 in handler mode.

• However, in the thread or base level, it can be either 0 or 1.

• This bit is writable only when the core is in thread mode and
privileged.

• In the user state or handler mode, writing to this bit is not allowed.

• Aside from writing to this register, another way to change this bit is to
change bit 2 of the LR when in exception return.

61

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Control Register (continued)
• CONTROL[0]
• The CONTROL[0] bit is writable only in a privileged state.

• Once it enters the user state, the only way to switch back to privileged is to
trigger an interrupt and change this in the exception handler.

• To access the control register in C, the following Cortex Microcontroller
Software Interface Standard (CMSIS) functions are available in CMSIS
compliant device driver libraries:

• To access the control register in assembly, the MRS and MSR instructions are
used:

62

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes

63

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes
• The Cortex-M3 processor has two operation modes – thread mode and handler mode,

and two privilege levels – privileged level and user level.

• The operation modes determine whether the processor is running a normal program
or running an exception handler like an interrupt handler or system exception handler.

• The privilege levels provide a mechanism for safeguarding memory accesses to critical
regions as well as providing a basic security model.

64

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes (continued)
• When the processor is running a main program (thread mode), it

can be in either the privileged or user level, but exception handlers
can only be in the privileged level.

65

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes (continued)
• When the processor exits reset, it is in thread mode, with privileged

access rights.

• In the privileged state, a program has access to all memory ranges
(except when prohibited by MPU settings) and can use all
supported instructions.

66

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes (continued)

67

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes (continued)
• Software in the privileged access level can switch the program into

the user access level using the control register.

• When an exception takes place, the processor will always switch
back to the privileged state and return to the previous state when
exiting the exception handler.

• A user program cannot change back to the privileged state by
writing to the control register.
• It has to go through an exception handler that programs the control

register to switch the processor back into the privileged access level
when returning to thread mode.

68

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes (continued)
• The separation of privilege and user levels improves system

reliability by preventing system configuration registers from being
accessed or changed by some untrusted programs.

• If an MPU is available, it can be used in conjunction with privilege
levels to protect critical memory locations, such as programs and
data for OSs.
• For example, with privileged accesses, usually used by the OS kernel,

all memory locations can be accessed (unless prohibited by MPU
setup).

• When the OS launches a user application, it is likely to be executed in
the user access level to protect the system from failing due to a crash
of untrusted user programs.

69

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes (continued)
• In the user access level (thread mode), access to the system control

space (SCS)—a part of the memory region for configuration
registers and debugging components—is blocked.

• Furthermore, instructions that access special registers (such as
MSR, except when accessing APSR) cannot be used.

• If a program running at the user access level tries to access SCS or
special registers, a fault exception will occur.

70

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes (continued)

71

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes (continued)
• In simple applications, there is no need to separate the privileged and user

access levels.
• In these cases, there is no need to use user access level and no need to program

the control register.

72

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operation Modes (continued)
• The mode and access level of the processor are defined by the control register.

• When the control register bit 0 is 0, the processor mode changes when an
exception takes place.

• When control register bit 0 is 1 (thread running user application), both
processor mode and access level change when an exception takes place.

• Control register bit 0 is programmable only in the privileged level.
• For a user-level program to switch to privileged state, it has to raise an interrupt (for

example, supervisor call [SVC]) and write to CONTROL[0] within the handler.

73

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 74

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Memory Map
• The Cortex-M3 has a predefined memory map.

• This allows the built-in peripherals, such as the interrupt controller and
the debug components, to be accessed by simple memory access
instructions.

• Thus, most system features are accessible in C program code.

• The predefined memory map also allows the Cortex-M3 processor to be
highly optimized for speed and ease of integration in system-on-a-chip
(SoC) designs.

• Overall, the 4 GB memory space can be divided into ranges as shown in
Figure 2.6.

75

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 76

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Memory Map (continued)
• The Cortex-M3 design has an internal bus infrastructure optimized for

this memory usage.

• In addition, the design allows these regions to be used differently.

• For example, data memory can still be put into the CODE region, and
program code can be executed from an external Random Access
Memory (RAM) region.

• The system-level memory region contains the interrupt controller and
the debug components.

• By having fixed addresses for these peripherals, you can port
applications between different Cortex-M3 products much more easily.

77

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Bus Interface
• There are several bus interfaces on the Cortex-M3 processor.

• They allow the Cortex-M3 to carry instruction fetches and data accesses at the
same time.

• The main bus interfaces are as follows:
• Code memory buses
• The code memory region access is carried out on the code memory buses, which physically

consist of two buses, one called I-Code and other called D-Code.
• These are optimized for instruction fetches for best instruction execution speed.

• System bus
• The system bus is used to access memory and peripherals.
• This provides access to the Static Random Access Memory (SRAM), peripherals, external RAM,

external devices, and part of the system-level memory regions.

• Private peripheral bus
• The private peripheral bus provides access to a part of the system-level memory dedicated to

private peripherals, such as debugging components.

78

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Memory Protection Unit (MPU)
• The Cortex-M3 has an optional MPU.

• This unit allows access rules to be set up for privileged access and user program
access.

• When an access rule is violated, a fault exception is generated, and the fault exception
handler will be able to analyse the problem and correct it, if possible.

• The MPU can be used in various ways.
• In common scenarios, the OS can set up the MPU to protect data use by the OS kernel and

other privileged processes to be protected from untrusted user programs.
• The MPU can also be used to make memory regions read-only, to prevent accidental erasing

of data or to isolate memory regions between different tasks in a multitasking system.

• Overall, it can help make embedded systems more robust and reliable.

• The MPU feature is optional and is determined during the implementation stage of
the microcontroller or SoC design.

79

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Nested Vectored Interrupt Controller
(NVIC)
• The Cortex-M3 processor includes an interrupt controller called the

Nested Vectored Interrupt Controller (NVIC).

• It is closely coupled to the processor core and provides a number of
features as follows:
• Nested interrupt support

• Vectored interrupt support

• Dynamic priority changes support

• Reduction of interrupt latency

• Interrupt masking

80

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Nested Vectored Interrupt Controller
(NVIC) (continued)
• Nested Interrupt Support
• All the external interrupts and most of the system exceptions can be

programmed to different priority levels.
• When an interrupt occurs, the NVIC compares the priority of this interrupt to

the current running priority level.
• If the priority of the new interrupt is higher than the current level, the

interrupt handler of the new interrupt will override the current running task.

• Vectored Interrupt Support
• When an interrupt is accepted, the starting address of the interrupt service

routine (ISR) is located from a vector table in memory.
• There is no need to use software to determine and branch to the starting

address of the ISR.
• Thus, it takes less time to process the interrupt request.

81

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Nested Vectored Interrupt Controller
(NVIC) (continued)
• Dynamic Priority Changes Support
• Priority levels of interrupts can be changed by software during run

time.
• Interrupts that are being serviced are blocked from further activation

until the ISR is completed, so their priority can be changed without risk
of accidental re-entry.

• Reduction of Interrupt Latency
• The Cortex-M3 processor also includes a number of advanced features

to lower the interrupt latency.
• These include automatic saving and restoring some register contents,

reducing delay in switching from one ISR to another, and handling of
late arrival interrupts.

82

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Nested Vectored Interrupt Controller
(NVIC) (continued)
• Interrupt Masking
• Interrupts and system exceptions can be masked based on their

priority level or masked completely using the interrupt masking
registers BASEPRI, PRIMASK, and FAULTMASK.

• They can be used to ensure that time-critical tasks can be finished on
time without being interrupted.

83

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Interrupts and Exceptions
• The Cortex-M3 processor implements a new exception model, introduced in the

ARMv7-M architecture.
• Enables very efficient exception handling.

• The Cortex-M3 supports a number of exceptions, including a fixed number of system
exceptions and a number of external Interrupt Request (IRQs) (external interrupt
inputs).

• Interrupt priority handling and nested interrupt support are now included in the
interrupt architecture.

• The interrupt features in the Cortex-M3 are implemented in the NVIC.

• Aside from supporting external interrupts, the Cortex-M3 also supports a number of
internal exception sources, such as system fault handling.

• As a result, the Cortex-M3 has a number of predefined exception types, as shown in
Table 2.2.

84

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 85

Interrupts and Exceptions

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Interrupts and Exceptions (continued)
• The number of interrupt inputs on a Cortex-M3 microcontroller depends on

the individual design.
• The typical number of interrupt inputs is 16 or 32.

• Besides the interrupt inputs, there is also a nonmaskable interrupt (NMI) input
signal.
• In most cases, the NMI could be connected to a watchdog timer or a voltage-

monitoring block that warns the processor when the voltage drops below a certain
level.

• The NMI exception can be activated any time, even right after the core exits reset.

86

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 87

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Vector Tables
• When an exception event takes place on the Cortex-M3 and is accepted by the

processor core, the corresponding exception handler is executed.

• To determine the starting address of the exception handler, a vector table
mechanism is used.

• The vector table is an array of word data inside the system memory, each
representing the starting address of one exception type.

• The vector table is relocatable, and the relocation is controlled by a relocation
register in the NVIC (see Table 3.5).

• After reset, this relocation control register is reset to 0; therefore, the vector
table is located in address 0x0 after reset.

88

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Vector Tables (continued)

89

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Vector Tables (continued)
• For example, if the reset is exception type 1, the address of the reset vector is 1

times 4 (each word is 4 bytes), which equals 0x00000004, and NMI vector (type
2) is located in 2 × 4 = 0x00000008.

• The address 0x00000000 is used to store the starting value for the MSP.

• The LSB of each exception vector indicates whether the exception is to be
executed in the Thumb state.

• Because the Cortex-M3 can support only Thumb instructions, the LSB of all the
exception vectors should be set to 1.

90

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Instruction Set
• The Cortex-M3 supports the Thumb-2 instruction set.
• It allows 32-bit instructions and 16-bit instructions to be used together for high

code density and high efficiency.

• It is flexible and powerful yet easy to use.

• In previous ARM processors, the central processing unit (CPU) had two
operation states – a 32-bit ARM state and a 16-bit Thumb state.
• In the ARM state, the instructions are 32 bits and can execute all supported

instructions with very high performance.

• In the Thumb state, the instructions are 16 bits, so there is a much higher
instruction code density
• The Thumb state does not have all the functionality of ARM instructions and may require more

instructions to complete certain types of operations.

91

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Instruction Set (continued)
• Many applications have mixed ARM and Thumb codes.
• However, there is overhead (in terms of both execution time and instruction space)

to switch between the states, and ARM and Thumb codes might need to be
compiled separately in different files.

• This increases the complexity of software development and reduces maximum
efficiency of the CPU core.

• With the introduction of the Thumb-2 instruction set, it is now possible to
handle all processing requirements in one operation state.
• There is no need to switch between the two.

• In fact, the Cortex-M3 does not support the ARM code.

• Even interrupts are now handled with the Thumb state.

92

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Instruction Set (continued)

93

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Instruction Set (continued)
• Since there is no need to switch between states, the Cortex-M3

processor has a number of advantages over traditional ARM
processors, such as:
• No state switching overhead, saving both execution time and instruction

space

• No need to separate ARM code and Thumb code source files, making
software development and maintenance easier

• It’s easier to get the best efficiency and performance, in turn making it
easier to write software, because there is no need to worry about switching
code between ARM and Thumb to try to get the best density/performance

94

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Instruction Set (continued)
• The Cortex-M3 processor has a number of interesting and powerful

instructions. Here are a few examples:
• UFBX, BFI, and BFC: Bit field extract, insert, and clear instructions

• UDIV and SDIV: Unsigned and signed divide instructions

• WFE, WFI, and SEV: Wait-For-Event, Wait-For-Interrupts, and Send-Event;
these allow the processor to enter sleep mode and to handle task
synchronization on multiprocessor systems

• MSR and MRS: Move to special register from general-purpose register and
move special register to general-purpose register; for access to the special
registers

95

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Debugging Support
• The Cortex-M3 processor includes a number of debugging features, such as

program execution controls, including halting and stepping, instruction
breakpoints, data watchpoints, registers and memory accesses, profiling, and
traces.

• The debugging hardware of the Cortex-M3 processor is based on the CoreSight
architecture.
• Unlike traditional ARM processors, the CPU core itself does not have a Joint Test

Action Group (JTAG) interface.

• Instead, a debug interface module is decoupled from the core, and a bus interface
called the Debug Access Port (DAP) is provided at the core level.

• Through this bus interface, external debuggers can access control registers to debug
hardware as well as system memory, even when the processor is running.

96

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Debugging Support (continued)
• The control of DAP bus interface is carried out by a Debug Port (DP) device.

• The DPs currently available are the Serial-Wire JTAG Debug Port (SWJ-DP)
(supports the traditional JTAG protocol as well as the Serial-Wire protocol) or
the SW-DP (supports the Serial-Wire protocol only).

• A JTAG-DP module from the ARM CoreSight product family can also be used.

• Chip manufacturers can choose to attach one of these DP modules to provide
the debug interface.

• Chip manufacturers can also include an Embedded Trace Macrocell (ETM) to
allow instruction trace.
• Trace information is output via the Trace Port Interface Unit (TPIU), and the debug

host (usually a Personal Computer [PC]) can then collect the executed instruction
information via external trace-capturing hardware.

97

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Debugging Support (continued)
• Within the Cortex-M3 processor, a number of events can be used to trigger

debug actions.
• Debug events can be breakpoints, watchpoints, fault conditions, or external

debugging request input signals.

• When a debug event takes place, the Cortex-M3 processor can either enter
halt mode or execute the debug monitor exception handler.

• The data watchpoint function is provided by a Data Watchpoint and Trace
(DWT) unit in the Cortex-M3 processor.
• This can be used to stop the processor (or trigger the debug monitor exception

routine) or to generate data trace information.

• When data trace is used, the traced data can be output via the TPIU.

98

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Debugging Support (continued)
• In addition to these basic debugging features, the Cortex-M3 processor also

provides a Flash Patch and Breakpoint (FPB) unit that can provide a simple
breakpoint function or remap an instruction access from Flash to a different
location in SRAM.

• An Instrumentation Trace Macrocell (ITM) provides a new way for developers
to output data to a debugger.
• By writing data to register memory in the ITM, a debugger can collect the

data via a trace interface and display or process them.

• This method is easy to use and faster than JTAG output.

• All these debugging components are controlled via the DAP interface bus on
the Cortex-M3 or by a program running on the processor core, and all trace
information is accessible from the TPIU.

99

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Stack Memory Operations
• In the Cortex-M3, besides normal software-controlled stack PUSH and POP, the

stack PUSH and POP operations are also carried out automatically when
entering or exiting an exception/interrupt handler.

100

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Basic Operations of the Stack
• In general, stack operations are memory write or read operations, with the address

specified by an SP.

• Data in registers is saved into stack memory by a PUSH operation and can be restored
to registers later by a POP operation.

• The SP is adjusted automatically in PUSH and POP so that multiple data PUSH will not
cause old stacked data to be erased.

• The function of the stack is to store register contents in memory so that they can be
restored later, after a processing task is completed.

• For normal uses, for each store (PUSH), there must be a corresponding read (POP),
and the address of the POP operation should match that of the PUSH operation.

• When PUSH/POP instructions are used, the SP is incremented/decremented
automatically.

101

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Basic Operations of the Stack (continued)

102

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Basic Operations of the Stack (continued)
• When program control returns to the main program, the R0 – R2 contents are

the same as before.

• Notice the order of PUSH and POP: The POP order must be the reverse of
PUSH.

• These operations can be simplified, thanks to PUSH and POP instructions
allowing multiple load and store.

• In this case, the ordering of a register POP is automatically reversed by the
processor.

103

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Basic Operations of the Stack (continued)

104

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Basic Operations of the Stack (continued)
• We can also combine RETURN with a POP operation.
• This is done by pushing the LR to the stack and popping it back to PC at the end of

the subroutine.

105

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Cortex-M3 Stack Implementation
• The Cortex-M3 uses a full-descending stack operation model.

• The SP points to the last data pushed to the stack memory, and the SP
decrements before a new PUSH operation.

• Figure 3.14 shows execution of the instruction PUSH {R0}.

106

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Cortex-M3 Stack Implementation
(continued)
• For POP operations, the data is read from the memory location pointed by SP,

and then, the SP is incremented.

• The contents in the memory location are unchanged but will be overwritten
when the next PUSH operation takes place.

107

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Cortex-M3 Stack Implementation
(continued)
• Because each PUSH/POP operation transfers 4 bytes of data (each

register contains 1 word, or 4 bytes), the SP decrements/increments by 4
at a time or a multiple of 4 if more than 1 register is pushed or popped.

• In the Cortex-M3, R13 is defined as the SP.
• When an interrupt takes place, a number of registers will be pushed

automatically, and R13 will be used as the SP for this stacking process.

• Similarly, the pushed registers will be restored/popped automatically
when exiting an interrupt handler, and the SP will also be adjusted.

108

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Two-Stack Model in the Cortex-M3
• The Cortex-M3 has two SPs: the MSP and the PSP.

• The SP register to be used is controlled by the control register bit 1
(CONTROL[1]).

• When CONTROL[1] is 0, the MSP is used for both thread mode and
handler mode.
• In this arrangement, the main program and the exception handlers share the

same stack memory region.

• This is the default setting after power-up.

109

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Two-Stack Model in the Cortex-M3
(continued)

110

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Two-Stack Model in the Cortex-M3
(continued)
• When the CONTROL[1] is 1, the PSP is used in thread mode.
• In this arrangement, the main program and the exception handler can have

separate stack memory regions.

• This can prevent a stack error in a user application from damaging the stack
used by the OS.

• The automatic stacking and unstacking mechanism will use PSP, whereas
stack operations inside the handler will use MSP.

111

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Two-Stack Model in the Cortex-M3
(continued)

112

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Two-Stack Model in the Cortex-M3
(continued)
• It is possible to perform read/write operations directly to the MSP

and PSP, without any confusion of which R13 you are referring to.

• Provided that you are in privileged level, you can access MSP and
PSP values:

• In general, it is not recommended to change current selected SP values in a C
function, as the stack memory could be used for storing local variables.

113

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

The Two-Stack Model in the Cortex-M3
(continued)
• To access the SPs in assembly, you can use the MRS and MSR

instructions:

• By reading the PSP value using an MRS instruction, the OS can read data
stacked by the user application (such as register contents before SVC).

• In addition, the OS can change the PSP pointer value—for example, during
context switching in multitasking systems.

114

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Reset Sequence
• After the processor exits reset, it will read two words from memory
• Address 0x00000000: Starting value of R13 (the SP)

• Address 0x00000004: Reset vector (the starting address of program
execution; LSB should be set to 1 to indicate Thumb state)

115

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Reset Sequence (continued)
• Because the stack operation in the Cortex-M3 is a full descending

stack (SP decrement before store), the initial SP value should be set
to the first memory after the top of the stack region.

• For example, if you have a stack memory range from 0x20007C00
to 0x20007FFF (1 KB), the initial stack value should be set to
0x20008000.

116

Shrishail Bhat, Dept. of ECE, AITM Bhatkal 117

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Reset Sequence (continued)
• The vector table starts after the initial SP value.

• The first vector is the reset vector.

• In the Cortex-M3, vector addresses in the vector table should have their
LSB set to 1 to indicate that they are Thumb code.

• For that reason, the previous example has 0x101 in the reset vector,
whereas the boot code starts at address 0x100 (see Figure 3.19).

• After the reset vector is fetched, the Cortex-M3 can then start to execute
the program from the reset vector address and begin normal operations.

• It is necessary to have the SP initialized, because some of the exceptions
(such as NMI) can happen right after reset, and the stack memory could
be required for the handler of those exceptions.

118

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Low Power and High Energy Efficiency
• The Cortex-M3 processor is designed with various features to allow designers to

develop low power and high energy efficient products.
• It has sleep mode and deep sleep mode supports, which can work with various system-

design methodologies to reduce power consumption during idle period.

• Its low gate count and design techniques reduce circuit activities in the processor to allow
active power to be reduced.

• It has high code density and hence it has lowered the program size requirement.

• It allows processing tasks to be completed in a short time, so that the processor can return
to sleep modes as soon as possible to cut down energy use.

• Starting from Cortex-M3 revision 2, a new feature called Wakeup Interrupt Controller
(WIC) is available.
• This feature allows the whole processor core to be powered down, while processor states

are retained and the processor can be returned to active state almost immediately when an
interrupt takes place.

• This makes the Cortex-M3 even more suitable for many ultra-low power applications

119

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics Summary
• High Performance
• The Cortex-M3 processor delivers high performance in microcontroller

products:

• Many instructions are single cycle

• Separate data and instruction buses

• No state switching overhead

• The Thumb-2 instruction set provides extra flexibility in programming

• Instruction fetches are 32 bits

• Operate at high clock frequency (over 100 MHz)

120

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics Summary (continued)
• Advanced Interrupt-Handling Features
• The interrupt features on the Cortex-M3 processor are easy to use, very

flexible, and provide high interrupt processing throughput:

• The built-in NVIC supports up to 240 external interrupt inputs

• It reduces the interrupt handling latency

• Interrupt arrangement is extremely flexible

• A minimum of eight levels of priority are supported, and the priority can be
changed dynamically.

• Some of the multicycle operations are now interruptible

• Immediate execution of the NMI handler is guaranteed on receipt of NMI
request

121

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics Summary (continued)
• Low Power Consumption
• The Cortex-M3 processor is suitable for various low-power applications:

• Suitable for low-power designs because of the low gate count.

• It has power-saving mode support (SLEEPING and SLEEPDEEP).

• The processor can enter sleep mode using WFI or WFE instructions.

• The design has separated clocks for essential blocks, so clocking circuits
for most parts of the processor can be stopped during sleep.

• The fully static, synchronous, synthesizable design makes the processor
easy to be manufactured using any low power or standard semiconductor
process technology.

122

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics Summary (continued)
• System Features
• The Cortex-M3 processor provides various system features making it suitable

for a large number of applications:

• The system provides bit-band operation, byte-invariant big endian mode,
and unaligned data access support.

• Advanced fault-handling features include various exception types and fault
status registers, making it easier to locate problems.

• With the shadowed stack pointer, stack memory of kernel and user
processes can be isolated.

• With the optional MPU, the processor is more than sufficient to develop
robust software and reliable products.

123

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics Summary (continued)
• Debug Supports
• The Cortex-M3 processor includes comprehensive debug features to help software

developers design their products:

• Supports JTAG or Serial-Wire debug interfaces

• Based on the CoreSight debugging solution, processor status or memory contents
can be accessed even when the core is running

• Built-in support for six breakpoints and four watchpoints

• Optional ETM for instruction trace and data trace using DWT

• New debugging features, including fault status registers, new fault exceptions, and
Flash Patch operations, make debugging much easier

• ITM provides an easy-to-use method to output debug information from test code

• PC sampler and counters inside the DWT provide code-profiling information

124

Shrishail Bhat, Dept. of ECE, AITM Bhatkal

References
1. Joseph Yiu, “The Definitive Guide to the ARM Cortex-M3”, 2nd Edition,

Newnes (Elsevier), 2010.

2. https://www.arm.com

125

