
RTOS and IDE for 
Embedded System Design

EMBEDDED SYSTEMS (18EC62)

MODULE – 5

1Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Operating System Basics

2Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Operating System Basics
• The operating system acts as a bridge between the user 

applications/tasks and the underlying system resources 
through a set of system functionalities and services. 

• The OS manages the system resources and makes them 
available to the user applications/tasks on a need basis. 

• The primary functions of an operating system are:
• Make the system convenient to use 
• Organise and manage the system resources efficiently and 

correctly 

3Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Operating System Architecture
• Figure gives an insight into the 

basic components of an 
operating system and their 
interfaces with rest of the 
world. 

4Shrishail Bhat, Dept. of ECE, AITM Bhatkal

User Applications

Underlying Hardware

K
er

n
el

 S
er

vi
ce

s

Memory Management

Process Management

Time Management

File System Management

I/O System Management

Application 
Programming 
Interface  (API)

Device Driver 
Interface

Fig: The Operating System Architecture



The Kernel
• The kernel is the core of the operating system and is responsible for 

managing the system resources and the communication among the 
hardware and other system services. 

• Kernel acts as the abstraction layer between system resources and 
user applications. 

• Kernel contains a set of system libraries and services. 

5Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Kernel (continued)
• For a general purpose OS, the kernel contains different services for 

handling the following:

• Process Management

• Primary Memory Management

• File System Management

• I/O System (Device) Management

• Secondary Storage Management

• Protection Systems

• Interrupt Handler

6Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Process Management
• Process management deals with managing the 

processes/tasks. 

• Process management includes 
• Setting up the memory space for the process
• Loading the process's code into the memory space
• Allocating system resources
• Scheduling and managing the execution of the process
• Setting up and managing the Process Control Block (PCB)
• Inter Process Communication and synchronisation
• Process termination/deletion, etc. 

7Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Primary Memory Management
• The term primary memory refers to the volatile memory (RAM) 

where processes are loaded and variables and shared data 
associated with each process are stored. 

• The Memory Management Unit (MMU) of the kernel is responsible 
for 
• Keeping track of which part of the memory area is currently used 

by which process 

• Allocating and De-allocating memory space on a need basis 
(Dynamic memory allocation)

8Shrishail Bhat, Dept. of ECE, AITM Bhatkal



File System Management
• File is a collection of related information. 

• A file could be a program (source code or executable), text files, image files, word 
documents, audio/video files, etc.

• The file system management service of Kernel is responsible for 
• The creation, deletion and alteration of files 

• Creation, deletion and alteration of directories 

• Saving of files in the secondary storage memory (e.g. Hard disk storage) 

• Providing automatic allocation of file space based on the amount of free space available 

• Providing a flexible naming convention for the files 

• The various file system management operations are OS dependent. 
• For example, the kernel of Microsoft DOS OS supports a specific set of file system 

management operations and they are not the same as the file system operations supported 
by UNIX Kernel.

9Shrishail Bhat, Dept. of ECE, AITM Bhatkal



I/O System (Device) Management
• Kernel is responsible for routing the I/O requests coming from different user 

applications to the appropriate I/O devices of the system. 

• In a well-structured OS, the direct accessing of I/O devices are not allowed and the 
access to them are provided through a set of Application Programming Interfaces 
(APIs) exposed by the kernel. 

• The kernel maintains a list of all the I/O devices of the system. 
• May be available in advance or updated dynamically as and when a new device is installed.

• The service Device Manager of the kernel is responsible for handling all I/O device 
related operations. 

• The kernel talks to the I/O device through a set of low-level systems calls, which are 
implemented in a service called device drivers. 

• Device Manager is responsible for 
• Loading and unloading of device drivers 
• Exchanging information and the system specific control signals to and from the device

10Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Secondary Storage Management
• The secondary storage management deals with managing the secondary 

storage memory devices, if any, connected to the system. 

• Secondary memory is used as backup medium for programs and data 
since the main memory is volatile. 

• In most of the systems, the secondary storage is kept in disks (Hard Disk). 

• The secondary storage management service of kernel deals with 
• Disk storage allocation 

• Disk scheduling (Time interval at which the disk is activated to backup data) 

• Free Disk space management 

11Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Protection Systems
• Most of the modern operating systems are designed in such a way to support 

multiple users with different levels of access permissions.
• E.g. ‘Administrator’, ‘Standard’, ‘Restricted’ permissions in Windows XP.

• Protection deals with implementing the security policies to restrict the access 
to both user and system resources by different applications or processes or 
users. 

• ln multiuser supported operating systems, one user may not be allowed to 
view or modify the whole or portions of another user's data or profile details.

• In addition, some application may not be granted with permission to make use 
of some of the system resources. 
• This kind of protection is provided by the protection services running within the 

kernel. 

12Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Interrupt Handler
• Kernel provides handler mechanism for all external/internal 

interrupts generated by the system.

13Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Kernel Space and User Space
• The applications/services are classified into two categories:
• User applications
• Kernel applications

• Kernel Space is the memory space at which the kernel code is 
located
• Kernel applications/services are kept in this contiguous area of primary 

(working) memory.
• It is protected from the unauthorised access by user 

programs/applications.

• User Space is the memory area where user applications are loaded 
and executed.

14Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Kernel Space and User Space (continued)
• The partitioning of memory into kernel and user space is purely OS dependent. 
• Some OS implement this kind of partitioning and protection whereas some OS do 

not segregate the kernel and user application code storage into two separate areas. 

• In an operating system with virtual memory support, the user applications are 
loaded into its corresponding virtual memory space with demand paging 
technique.
• The entire code for the user application need not be loaded to the main (primary) 

memory at once.
• The user application code is split into different pages and these pages are loaded 

into and out of the main memory area on a need basis. 
• The act of loading the code into and out of the main memory is termed as 

'Swapping’. 
• Swapping happens between the main (primary) memory and secondary storage 

memory. 

15Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Monolithic Kernel and Microkernel
• The kernel forms the heart of an operating system. 

• Different approaches are adopted for building an Operating System 
kernel. 

• Based on the kernel design, kernels can be classified into
• Monolithic Kernel

• Microkernel

16Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Monolithic Kernel
• In monolithic kernel architecture, all kernel services run in the kernel 

space. 

• Here all kernel modules run within the same memory space under a 
single kernel thread. 

• The tight internal integration of kernel modules in monolithic kernel 
architecture allows the effective utilisation of the low-level features of 
the underlying system. 

• The major drawback of monolithic kernel is that any error or failure in 
any one of the kernel modules leads to the crashing of the entire kernel 
application. 

• LINUX, SOLARIS, MS-DOS kernels are examples of monolithic kernel.

17Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Monolithic Kernel (continued)
• The architecture representation of a monolithic kernel is given in 

the figure. 

18Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Applications

Monolithic kernel with all 
operating system services 

running in kernel space

Fig: The Monolithic Kernel Model



Microkernel
• The microkernel design incorporates only the essential set of Operating 

System services into the kernel. 

• The rest of the Operating System services are implemented in programs 
known as 'Servers' which runs in user space. 

• This provides a 'highly modular design and OS-neutral abstract to the 
kernel. 

• Memory management, process management, timer systems and 
interrupt handlers are the essential services, which forms the part of the 
microkernel.

• Mach, QNX, Minix 3 kernels are examples for microkernel.

19Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Microkernel (continued)
• The architecture representation of a microkernel is shown in the 

figure.

20Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig: The Microkernel Model

Services (kernel 
services running in 

user space)

Microkernel with essential 
services like memory 
management, process 

management, timer system, etc.

Applications



Microkernel (continued)
• Microkernel based design approach offers the following benefits:
• Robustness
• If a problem is encountered in any of the services, which runs as 'Server' 

application, the same can be reconfigured and re-started without the need for re-
starting the entire OS. 

• Thus, this approach is highly useful for systems, which demands high 'availability’.

• Since the services which run as 'Servers' are running on a different memory space, 
the chances of corruption of kernel services are ideally zero. 

• Configurability
• Any service which runs as 'Server' application can be changed without the need to 

restart the whole system. 

• This makes the system dynamically configurable. 

21Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Types of Operating 
Systems

22Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Types of Operating Systems
• Depending on the type of kernel and kernel services, purpose and 

type of computing systems where the OS is deployed and the 
responsiveness to applications, Operating Systems are classified 
into different types.

• General Purpose Operating System (GPOS)

• Real-Time Operating System (RTOS)

23Shrishail Bhat, Dept. of ECE, AITM Bhatkal



General Purpose Operating System 
(GPOS)
• The operating systems which are deployed in general computing systems are referred 

as General Purpose Operating Systems (GPOS). 

• The kernel of such a GPOS is more generalised and it contains all kinds of services 
required for executing generic applications. 

• General purpose operating systems are often quite non-deterministic in behaviour. 
• Their services can inject random delays into application software and may cause slow 

responsiveness of an application at unexpected times. 

• GPOS are usually deployed in computing systems where deterministic behaviour is not 
an important criterion. 

• Personal Computer/Desktop system is a typical example for a system where GPOSs are 
deployed. 

• Windows XP/MS-DOS etc. are examples for General Purpose Operating Systems. 

24Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Real-Time Operating System (RTOS)
• 'Real-Time' implies deterministic timing behaviour. 

• Deterministic timing behaviour in RTOS context means the OS services consumes only 
known and expected amounts of time regardless the number of services. 

• A Real-Time Operating System or RTOS implements policies and rules concerning 
time-critical allocation of a system's resources. 
• The RTOS decides which applications should run in which order and how much time needs 

to be allocated for each application. 

• Predictable performance is the hallmark of a well-designed RTOS. 

• This is best achieved by the consistent application of policies and rules. 
• Policies guide the design of an RTOS. 

• Rules implement those policies and resolve policy conflicts. 

• Windows CE, QNX, VxWorks, MicroC/OS-II, etc. are examples of Real-Time Operating 
Systems (RTOS). 

25Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel
• The kernel of a Real-Time Operating System is referred as Real-Time kernel. 

• The Real-Time kernel is highly specialised and it contains only the minimal set 
of services required for running the user applications/tasks. 

• The basic functions of a Real-Time kernel are:
• Task/Process Management 

• Task/Process Scheduling 

• Task/Process Synchronisation 

• Error/Exception Handling 

• Memory Management 

• Interrupt Handling 

• Time Management 

26Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• Task/Process Management

• Deals with 

• setting up the memory space for the tasks

• loading the task's code into the memory space

• allocating system resources

• setting up a Task Control Block (TCB) for the task

• task/process termination/deletion

• A Task Control Block (TCB) is used for holding the information 
corresponding to a task.

27Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• TCB usually contains the following set of information:

• Task ID: Task Identification Number 

• Task State: The current state of the task (e.g. State = 'Ready' for a task which is ready to execute) 

• Task Type: Indicates what is the type for this task. The task can be a hard real time or soft real 
time or background task. 

• Task Priority: Task priority (e.g. Task priority = 1 for task with priority = 1) 

• Task Context Pointer: Pointer for context saving 

• Task Memory Pointers: Pointers to the code memory, data memory and stack memory for the 
task 

• Task System Resource Pointers: Pointers to system resources (semaphores, mutex, etc.) used by 
the task 

• Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting tasks) 

• Other Parameters: Other relevant task parameters

28Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• The parameters and implementation of the TCB is kernel dependent. 

• The TCB parameters vary across different kernels, based on the task 
management implementation. 

• Task management service utilises the TCB of a task in the following 
way:
• Creates a TCB for a task on creating a task 

• Delete/remove the TCB of a task when the task is terminated or deleted 

• Reads the TCB to get the state of a task 

• Update the TCB with updated parameters on need basis (e.g. on a context 
switch) 

• Modify the TCB to change the priority of the task dynamically 

29Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• Task/Process Scheduling

• Deals with sharing the CPU among various tasks/processes. 

• A kernel application called 'Scheduler' handles the task scheduling.

• Scheduler is nothing but an algorithm implementation, which performs the 
efficient and optimum scheduling of tasks to provide a deterministic 
behaviour. 

• Task/Process Synchronisation 

• Deals with synchronising the concurrent access of a resource, which is 
shared across multiple tasks and the communication between various 
tasks. 

30Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• Error/Exception Handling
• Deals with registering and handling the errors occurred/exceptions raised 

during the execution of tasks. 

• Insufficient memory, timeouts, deadlocks, deadline missing, bus error, 
divide by zero, unknown instruction execution, etc. are examples of 
errors/exceptions. 

• Errors/Exceptions can happen at the kernel level services or at task level. 

• Deadlock is an example for kernel level exception, whereas timeout is an 
example for a task level exception. 

• The OS kernel gives the information about the error in the form of a system call 
(API).

• Watchdog timer is a mechanism for handling the timeouts for tasks. 

31Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• Memory Management
• RTOS makes use of 'block' based memory allocation technique, instead of 

the usual dynamic memory allocation techniques used by the GPOS.

• RTOS kernel uses blocks of fixed size of dynamic memory and the block is 
allocated for a task on a need basis. 

• The blocks are stored in a 'Free Buffer Queue’. 

• To achieve predictable timing and avoid the timing overheads, most of the 
RTOS kernels allow tasks to access any of the memory blocks without any 
memory protection.

• RTOS kernels assume that the whole design is proven correct and protection is 
unnecessary. 

• Some commercial RTOS kernels allow memory protection as optional.

32Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• A few RTOS kernels implement Virtual Memory concept for memory 

allocation if the system supports secondary memory storage (like HDD and 
FLASH memory). 

• In the 'block' based memory allocation, a block of fixed memory is always 
allocated for tasks on need basis and it is taken as a unit. 

• Hence, there will not be any memory fragmentation issues. 

• The 'block' based memory allocation achieves deterministic behaviour with 
the trade of limited choice of memory chunk size and suboptimal memory 
usage. 

33Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• Interrupt Handling
• Deals with the handling of various types of interrupts. 
• Interrupts provide Real-Time behaviour to systems. 
• Interrupts inform the processor that an external device or an associated 

task requires immediate attention of the CPU. 
• Interrupts can be either Synchronous or Asynchronous. 
• Synchronous interrupts:
• Occur in sync with the currently executing task.
• Usually the software interrupts fall under this category. 
• Divide by zero, memory segmentation error, etc. are examples of synchronous 

interrupts. 
• For synchronous interrupts, the interrupt handler runs in the same context of 

the interrupting task. 

34Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• Asynchronous interrupts:
• Occur at any point of execution of any task, and are not in sync with the currently 

executing task. 

• The interrupts generated by external devices (by asserting the interrupt line of the 
processor/controller to which the interrupt line of the device is connected) connected to 
the processor/controller, timer overflow interrupts, serial data reception/ transmission 
interrupts, etc. are examples for asynchronous interrupts. 

• For asynchronous interrupts, the interrupt handler is usually written as separate task 
and it runs in a different context.

• Hence, a context switch happens while handling the asynchronous interrupts. 

• Priority levels can be assigned to the interrupts and each interrupt can be 
enabled or disabled individually.

• Most of the RTOS kernel implements 'Nested Interrupts' architecture. 
• Interrupt nesting allows the pre-emption (interruption) of an Interrupt Service 

Routine (ISR), servicing an interrupt, by a high priority interrupt. 

35Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• Time Management
• Accurate time management is essential for providing precise time 

reference for all applications. 
• The time reference to kernel is provided by a high-resolution Real-Time 

Clock (RTC) hardware chip (hardware timer). 
• The hardware timer is programmed to interrupt the processor/controller at 

a fixed rate. 
• This timer interrupt is referred as ‘Timer tick’ and is taken as the timing 

reference by the kernel. 
• The 'Timer tick' interval may vary depending on the hardware timer. 
• Usually the 'Timer tick' varies in the microseconds range. 

• The time parameters for tasks are expressed as the multiples of the ‘Timer 
tick'. 

36Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• The System time is updated based on the 'Timer tick’. 

• If the System time register is 32 bits wide and the 'Timer tick' interval 
is 1 microsecond, the System time register will reset in 

232 × 10−6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
232 × 10−6

24 × 60 × 60
𝐷𝑎𝑦𝑠 = ~0.0497 𝐷𝑎𝑦𝑠 = 1.19 𝐻𝑜𝑢𝑟𝑠

• If the ‘Timer tick' interval is 1 millisecond, the system time register 
will reset in 

232 × 10−3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
232 × 10−3

24 × 60 × 60
𝐷𝑎𝑦𝑠 = 49.7 𝐷𝑎𝑦𝑠 = ~50 𝐷𝑎𝑦𝑠

37Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Real-Time Kernel (continued)
• The 'Timer tick' interrupt is handled by the 'Timer Interrupt' handler of kernel. 

• The 'Timer tick' interrupt can be utilised for implementing the following actions:

• Save the current context (Context of the currently executing task). 

• Increment the System time register by one. Generate timing error and reset the System time register if 
the timer tick count is greater than the maximum range available for System time register. 

• Update the timers implemented in kernel (Increment or decrement the timer registers for each timer 
depending on the count direction setting for each register. Increment registers with count direction 
setting = 'count up' and decrement registers with count direction setting = 'count down'). 

• Activate the periodic tasks, which are in the idle state. 

• Invoke the scheduler and schedule the tasks again based on the scheduling algorithm. 

• Delete all the terminated tasks and their associated data structures (TCBs).

• Load the context for the first task in the ready queue. Due to the re-scheduling, the ready task might be 
changed to a new one from the task, which was preempted by the 'Timer Interrupt' task.

38Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Hard Real-Time
• Real-Time Operating Systems that strictly adhere to the timing 

constraints for a task are referred as 'Hard Real-Time' systems. 
• They must meet the deadlines for a task without any slippage. 

• Missing any deadline may produce catastrophic results for Hard Real-Time Systems, 
including permanent data loss and irrecoverable damages to the system/users. 

• Hard Real-Time systems emphasise the principle ‘A late answer is a 
wrong answer’. 

• Air bag control systems and Anti-lock Brake Systems (ABS) of vehicles are 
typical examples for Hard Real-Time Systems.
• Any delay in the deployment of the air bags makes the life of the passengers under 

threat. 

39Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Hard Real-Time (continued)
• Hard Real-Time Systems does not implement the virtual memory 

model for handling the memory. 

• This eliminates the delay in swapping in and out the code 
corresponding to the task to and from the primary memory. 

• Most of the Hard Real-Time Systems are automatic and does not 
contain a Human in the Loop (HITL). 

• The presence of human in the loop for tasks introduces unexpected 
delays in the task execution.

40Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Soft Real-Time
• Real-Time Operating Systems that do not guarantee meeting deadlines, but offer the best 

effort to meet the deadline are referred as 'Soft Real-Time' systems.

• Missing deadlines for tasks are acceptable for a Soft Real-time system if the frequency of 
deadline missing is within the compliance limit of the Quality of Service (QoS). 

• A Soft Real-Time system emphasises the principle 'A late answer is an acceptable answer, but it 
could have done bit faster’. 

• Soft Real-Time systems most often have a human in the loop (HITL). 

• Automated Teller Machine (ATM) is a typical example for Soft-Real-Time System. 

• If the ATM takes a few seconds more than the ideal operation time, nothing fatal happens. 

• An audio-video playback system is another example for Soft Real-Time system. 

• No potential damage arises if a sample comes late by fraction of a second, for playback. 

41Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Tasks, Process and 
Threads

42Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task
• The term 'task' refers to something that needs to be done.

• In the operating system context, a task is defined as the program in 
execution and the related information maintained by the operating 
system for the program. 

• Task is also known as 'Job' in the operating system context. 

• A program or part of it in execution is also called a 'Process’. 

• The terms 'Task', 'Job' and 'Process' refer to the same entity in the 
operating system context and most often they are used interchangeably.

43Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Process
• A 'Process' is a program, or part of it, in execution. 

• Process is also known as an instance of a program in execution. 

• Multiple instances of the same program can execute 
simultaneously. 

• A process requires various system resources like CPU for executing 
the process; memory for storing the code corresponding to the 
process and associated variables, I/O devices for information 
exchange, etc. 

• A process is sequential in execution.

44Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Structure of a Process
• The concept of 'Process' leads to concurrent execution (pseudo 

parallelism) of tasks and thereby the efficient utilisation of the CPU and 
other system resources. 

• Concurrent execution is achieved through the sharing of CPU among the 
processes. 

• A process mimics a processor in properties and holds a set of registers, 
process status, a Program Counter (PC) to point to the next executable 
instruction of the process, a stack for holding the local variables 
associated with the process and the code corresponding to the process.

• This can be visualised as shown in the figure.

45Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Structure of a Process (continued)

Stack
(Stack Pointer)

Working Registers

Status Registers

Program Counter (PC)

46Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Process

Code memory 
corresponding to the 

Process

Fig: Structure of a Process



The Structure of a Process (continued)
• A process which inherits all the properties of the CPU can be 

considered as a virtual processor, awaiting its turn to have its 
properties switched into the physical processor. 

• When the process gets its turn, its registers and the program 
counter register becomes mapped to the physical registers of the 
CPU.

47Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Structure of a Process (continued)
• From a memory perspective, the 

memory occupied by the process 
is segregated into three regions as 
shown in the figure: 
• Stack memory - holds all 

temporary data such as variables 
local to the process

• Data memory - holds all global data 
for the process

• Code memory - contains the 
program code (instructions) 
corresponding to the process

48Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig: Memory Organisation of a Process



Process States and State Transition
• The process traverses through a series of states during its transition from 

the newly created state to the terminated state. 

• The cycle through which a process changes its state from 'newly created'
to 'execution completed' is known as 'Process Life Cycle’. 

• The various states through which a process traverses through during a 
Process Life Cycle indicates the current status of the process with respect 
to time and also provides information on what it is allowed to do next. 

• The transition of a process from one state to another is known as 'State 
transition’. 

• Figure represents the various states and state transitions associated with 
a process. 

49Shrishail Bhat, Dept. of ECE, AITM Bhatkal



50Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Created

Ready

Blocked

Completed

Running

Fig: Process States and State Transition Representation



Process States and State Transition 
(continued)
• The state at which a process is being created is referred as 'Created 

State’. 
• The Operating System recognises a process in the 'Created State' but no resources 

are allocated to the process. 

• The state, where a process is incepted into the memory and awaiting the 
processor time for execution, is known as 'Ready State’. 
• At this stage, the process is placed in the 'Ready list' queue maintained by the OS. 

• The state where in the source code instructions corresponding to the 
process is being executed is called 'Running State’.
• Running State is the state at which the process execution happens. 

51Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Process States and State Transition 
(continued)
• 'Blocked State/Wait State' refers to a state where a running process 

is temporarily suspended from execution and does not have 
immediate access to resources. 

• The blocked state might be invoked by various conditions like: 

• the process enters a wait state for an event to occur (e.g. Waiting for user inputs 
such as keyboard input) or

• waiting for getting access to a shared resource 

• A state where the process completes its execution is known as 
'Completed State’. 

52Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Process Management
• Process management deals with 

• creation of a process

• setting up the memory space for the process

• loading the process's code into the memory space

• allocating system resources

• setting up a Process Control Block (PCB) for the process

• process termination/deletion

53Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Threads
• A thread is the primitive that can execute code. 

• A thread is a single sequential flow of control within a process. 

• 'Thread' is also known as light-weight process. 

• A process can have many threads of execution. 

• Different threads, which are part of a process, share the same address space; 
meaning they share the data memory, code memory and heap memory area. 

• Threads maintain their own thread status (CPU register values), Program 
Counter (PC) and stack. 

• The memory model for a process and its associated threads are given in the 
figure.

54Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Threads (continued)

Stack memory for Thread 1

Stack memory for Thread 2

Data memory for Process

Code memory for Process

55Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Stack memory for Process

Fig: Memory organisation of a Process and its associated Threads



The Concept of Multithreading
• A process/task in embedded application may be a complex or 

lengthy one and it may contain various suboperations like getting 
input from I/O devices connected to the processor, performing 
some internal calculations/operations, updating some I/O devices 
etc. 

• If all the subfunctions of a task are executed in sequence, the CPU 
utilisation may not be efficient.
• For example, if the process is waiting for a user input, the CPU enters 

the wait state for the event, and the process execution also enters a 
wait state. 

56Shrishail Bhat, Dept. of ECE, AITM Bhatkal



The Concept of Multithreading 
(continued)
• Instead of this single sequential execution of the whole process, if the 

task/process is split into different threads carrying out the different 
subfunctionalities of the process, the CPU can be effectively utilised and when 
the thread corresponding to the I/O operation enters the wait state, another 
threads which do not require the I/O event for their operation can be switched 
into execution. 
• This leads to more speedy execution of the process and the efficient utilisation of 

the processor time and resources. 

• If the process is split into multiple threads, which executes a portion of the 
process, there will be a main thread and rest of the threads will be created 
within the main thread.

• The multithreaded architecture of a process can be better visualised with the 
thread-process diagram, shown in the figure.

57Shrishail Bhat, Dept. of ECE, AITM Bhatkal



58Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig: Process with multithreads

Code Memory

Data Memory

Stack Stack Stack

Registers Registers Registers

Thread 1

void main (void)

{

//create child 

thread 1

CreateThread (NULL, 

1000,(LPTHREAD_START

_ROUTINE)ChildThread

1, NULL, 0, 

&dwThreadID);

//create child 

thread 2

CreateThread (NULL, 

1000,(LPTHREAD_START

_ROUTINE)ChildThread

2, NULL, 0, 

&dwThreadID);

}

Thread 2

int ChildThread1 

(void)

{

//Do something

}

Thread 3

int ChildThread2 

(void)

{

//Do something

}

Task/Process



The Concept of Multithreading 
(continued)
• Use of multiple threads to execute a process brings the following 

advantages:
• Better memory utilisation
• Multiple threads of the same process share the address space for data memory. 

• This also reduces the complexity of inter thread communication since variables can be 
shared across the threads. 

• Speedy execution of the process
• Since the process is split into different threads, when one thread enters a wait state, the 

CPU can be utilised by other threads of the process that do not require the event, which 
the other thread is waiting, for processing. 

• Efficient CPU utilisation
• The CPU is engaged all time. 

59Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Thread Standards
• Thread standards deal with the different standards available for 

thread creation and management. 
• These standards are utilised by the operating systems for thread 

creation and thread management. 

• It is a set of thread class libraries. 

• The commonly available thread class libraries are:
• POSIX Threads

• Win32 Threads

• Java Threads

60Shrishail Bhat, Dept. of ECE, AITM Bhatkal



POSIX Threads
• POSIX stands for Portable Operating System Interface. 

• The POSIX.4 standard deals with the Real-Time extensions and 
POSIX.4a standard deals with thread extensions. 

• The POSIX standard library for thread creation and management is 
'Pthreads’. 

• 'Pthreads' library defines the set of POSIX thread creation and 
management functions in 'C' language. 

61Shrishail Bhat, Dept. of ECE, AITM Bhatkal



POSIX Threads (continued)

• This primitive creates a new thread for running the function start_function. 

• Here pthread_t is the handle to the newly created thread and pthread_attr_t is 
the data type for holding the thread attributes. 

• 'start_function' is the function the thread is going to execute and arguments is 
the arguments for 'start_function’.

• On successful creation of a Pthread, pthread_create() associates the Thread 
Control Block (TCB) corresponding to the newly created thread to the variable 
of type pthread_t (new_thread_ID in our example).

62Shrishail Bhat, Dept. of ECE, AITM Bhatkal

int pthread_create(pthread_t *new_thread_ID, const pthread_attr_t, *attribute, 

void * (*start_function) (void *), void *arguments);



POSIX Threads (continued)

• This primitive blocks the current thread and waits until the 
completion of the thread pointed by it (new_thread in this example).

• All the POSIX 'thread calls' returns an integer. 

• A return value of zero indicates the success of the call. 

63Shrishail Bhat, Dept. of ECE, AITM Bhatkal

int pthread_join(pthread_t new_thread, void * *thread_status);



64Shrishail Bhat, Dept. of ECE, AITM Bhatkal

• Write a multithreaded application to print 'Hello I'm in main thread" from the 
main thread and "Hello I'm in new thread" 5 times each, using the 
pthread_create() and pthread_join() POSIX primitives. 

//Assumes the application is running on an OS where POSIX library is available

#include<pthread.h>

#include<stdlib.h>

#include<stdio.h>

//*****************************************************************************

//New thread function for printing “Hello I’m in new thread”

void *new_thread(void *thread_args)

{

int i,j;

for(j=0; j<5; j++)

{

printf(“Hello I’m in new thread\n”);

for(i=0; i<10000; i++); //Wait for some time. Do nothing.

}

return NULL;

}

POSIX Threads - Example



65Shrishail Bhat, Dept. of ECE, AITM Bhatkal

//*****************************************************************************

//Start of main thread

int main (void)

{

int i,j;

pthread_t tcb;

//Create the new thread for executing new_thread function

if (pthread_create(&tcb, NULL, new_thread, NULL))

{

//New thread creation failed

printf(“Error in creating new thread\n”);

return -1;

}

for(j=0; j<5; j++)

{

printf(“Hello I’m in main thread\n”);

for(i=0; i<10000; i++); //Wait for some time. Do nothing.

}

if (pthread_join(tcb, NULL))

{

//Thread join failed

printf(“Error in Thread join\n”);

return -1;

}

return 1;

}



POSIX Threads (continued)
• The termination of a thread can happen in different ways:

• Natural termination:

• The thread completes its execution and returns to the main thread through a 
simple return or by executing the pthread_exit() call.

• Forced termination:

• This can be achieved by the call pthread_cancel() or through the termination of 
the main thread with exit or exec functions. 

• pthread_cancel() call is used by a thread to terminate another thread. 

66Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Thread Pre-emption
• Thread pre-emption is the act of pre-empting the currently running 

thread.
• It means, stopping the currently running thread temporarily. 

• Thread pre-emption is performed for sharing the CPU time among 
all the threads. 

• The execution switching among threads is known as 'Thread context 
switching’. 

• Thread context switching is dependent on the Operating system's 
scheduler and the type of the thread.

67Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Types of Threads
• User Level Threads
• User level threads do not have kernel/Operating System support and they exist 

solely in the running process. 

• Even if a process contains multiple user level threads, the OS treats it as single 
thread and will not switch the execution among the different threads of it. 
• It is the responsibility of the process to schedule each thread as and when required. 

• In summary, user level threads of a process are non-preemptive at thread level 
from OS perspective. 

• The execution switching (thread context switching) happens only when the 
currently executing user level thread is voluntarily blocked. 
• Hence, no OS intervention and system calls are involved in the context switching of user level 

threads. 

• This makes context switching of user level threads very fast.

68Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Types of Threads (continued)
• Kernel Level Threads
• Kernel level threads are individual units of execution, which the OS treats as 

separate threads. 

• The OS interrupts the execution of the currently running kernel thread and 
switches the execution to another kernel thread based on the scheduling 
policies implemented by the OS. 

• In summary, kernel level threads are pre-emptive. 

• Kernel level threads involve lots of kernel overhead and involve system calls 
for context switching. 

• However, kernel threads maintain a clear layer of abstraction and allow 
threads to use system calls independently. 

69Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Thread Binding Models
• There are many ways for binding user level threads with system/kernel 

level threads. 

• Many-to-One Model

• Here, many user level threads are mapped to a single kernel thread. 

• In this model, the kernel treats all user level threads as single thread and the 
execution switching among the user level threads happens when a currently 
executing user level thread voluntarily blocks itself or relinquishes the CPU. 

• Solaris Green threads and GNU Portable Threads are examples for this. 

• The 'PThread’ example is an illustrative example for application with Many-
to-One thread model.

70Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Thread Binding Models (continued)
• One-to-One Model

• Here, each user level thread is bonded to a kernel/system level thread.

• Windows XP/NT/2000 and Linux threads are examples for One-to-One 
thread models. 

• The modified 'PThread' example is an illustrative example for application 
with One-to-One thread model. 

• Many-to-Many Model 

• In this model, many user level threads are allowed to be mapped to many 
kernel threads. 

• Windows NT/2000 with ThreadFibre package is an example for this. 

71Shrishail Bhat, Dept. of ECE, AITM Bhatkal



72Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Thread Process

Thread is a single unit of execution and is part of process. Process is a program in execution and contains one or 
more threads.

A thread does not have its own data memory and heap 
memory. It shares the data memory and heap memory 
with other threads of the same process.

Process has its own code memory, data memory and stack 
memory.

A thread cannot live independently; it lives within the 
process.

A process contains at least one thread.

There can be multiple threads in a process. The first 
thread (main thread) calls the main function and occupies 
the start of the stack memory of the process.

Threads within a process share the code, data and heap 
memory. Each thread holds separate memory area for 
stack (share the total stack memory of the process).

Threads are very inexpensive to create. Processes are very expensive to create. Involves many OS 
overhead.

Context switching is inexpensive and fast. Context switching is complex and involves lot of OS 
overhead and is comparatively slower.

If a thread expires, its stack is reclaimed by the process. If a process dies, the resources allocated to it are 
reclaimed by the OS and all the associated threads of the 
process also die.

Thread vs. Process



Task Scheduling

73Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Scheduling
• Multitasking involves the execution switching among the different tasks. 

• There should be some mechanism in place to share the CPU among the different tasks 
and to decide which process/task is to be executed at a given point of time. 

• Determining which task/process is to be executed at a given point of time is known as 
task/process scheduling. 

• Scheduling policies forms the guidelines for determining which task is to be executed 
when. 

• The scheduling policies are implemented in an algorithm and it is run by the kernel as 
a service. 

• The kernel service/application, which implements the scheduling algorithm, is known 
as 'Scheduler'. 

74Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Scheduling
• Based on the scheduling algorithm used, scheduling can be 

classified into:

• Non-preemptive Scheduling

• The currently executing task/process is allowed to run until it terminates or 
enters the ‘Wait’ state waiting for an I/O or system resource.

• Preemptive Scheduling

• The currently executing task/process is preempted (stopped temporarily) 
and another task from the Ready queue is selected for execution.

75Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Scheduling (continued)
• The process scheduling decision may take place when a process 

switches its state to 
1. 'Ready' state from 'Running' state 

2. 'Blocked/Wait' state from 'Running' state 

3. 'Ready' state from 'Blocked/Wait' state 

4. 'Completed' state 

• A process switches to 'Ready' state from the 'Running' state when it 
is preempted. 
• Hence, the type of scheduling in scenario 1 is pre-emptive. 

76Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Scheduling (continued)
• When a high priority process in the 'Blocked/Wait' state completes its I/O and 

switches to the 'Ready' state, the scheduler picks it for execution if the 
scheduling policy used is priority based preemptive. 

• This is indicated by scenario 3. 

• In preemptive/non-preemptive multitasking, the process relinquishes the CPU 
when it enters the ‘Blocked/Wait' state or the 'Completed' state and switching 
of the CPU happens at this stage. 

• Scheduling under scenario 2 can be either preemptive or non-preemptive. 

• Scheduling under scenario 4 can be preemptive, non-preemptive or co-
operative. 

77Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Scheduling (continued)
• The selection of a scheduling criterion/algorithm should consider the 

following factors: 
• CPU Utilisation: 
• The scheduling algorithm should always make the CPU utilisation high. 

• CPU utilisation is a direct measure of how much percentage of the CPU is being utilised. 

• Throughput: 
• This gives an indication of the number of processes executed per unit of time. 

• The throughput for a good scheduler should always be higher. 

• Turnaround Time (TAT): 
• It is the amount of time taken by a process for completing its execution. 

• It includes the time spent by the process for waiting for the main memory, time spent in the 
ready queue, time spent on completing the I/O operations, and the time spent in execution. 

• The turnaround time should be minimal for a good scheduling algorithm. 

78Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Scheduling (continued)
• Waiting Time: 
• It is the amount of time spent by a process in the 'Ready' queue waiting to get the CPU 

time for execution. 

• The waiting time should be minimal for a good scheduling algorithm. 

• Response Time: 
• It is the time elapsed between the submission of a process and the first response. 

• For a good scheduling algorithm, the response time should be as least as possible.

79Shrishail Bhat, Dept. of ECE, AITM Bhatkal

To summarise, a good scheduling algorithm has high CPU utilisation, minimum Turn Around 
Time (TAT), maximum throughput and least response time. 



Task Scheduling (continued)
• The various queues maintained by OS in association with CPU 

scheduling are: 

• Job Queue: 

• Contains all the processes in the system.

• Ready Queue: 

• Contains all the processes, which are ready for execution and waiting for CPU to 
get their turn for execution. 

• The Ready queue is empty when there is no process ready for running. 

• Device Queue: 

• Contains the set of processes, which are waiting for an I/O device. 

80Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Preemptive Scheduling
• In preemptive scheduling, the scheduler can preempt (stop temporarily) the 

currently executing task/process and select another task from the 'Ready' 
queue for execution. 

• Every task in the 'Ready' queue gets a chance to execute. 

• When to pre-empt a task and which task is to be picked up from the 'Ready' 
queue for execution after preempting the current task is purely dependent on 
the scheduling algorithm. 

• A task which is preempted by the scheduler is moved to the 'Ready' queue. 

• The act of moving a 'Running' process/task into the 'Ready' queue by the 
scheduler, without the processes requesting for it is known as ‘Preemption’

81Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Preemptive Scheduling Techniques
• Preemptive scheduling can be implemented in different 

approaches. 
• Time-based preemption

• Priority-based preemption

• The various types of preemptive scheduling adopted in 
task/process scheduling are:
• Preemptive Shortest Job First (SJF)/Shortest Remaining Time (SRT) 

Scheduling

• Round Robin (RR) Scheduling

• Priority Based Scheduling

82Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Preemptive Shortest Job First (SJF)/Shortest 
Remaining Time (SRT) Scheduling
• In SJF, the process with the shortest estimated run time is scheduled first, followed by 

the next shortest process, and so on. 

• The preemptive SJF scheduling algorithm sorts the 'Ready' queue when a new process 
enters the 'Ready' queue and checks whether the execution time of the new process 
is shorter than the remaining of the total estimated time for the currently executing 
process. 

• If the execution time of the new process is less, the currently executing process is 
preempted and the new process is scheduled for execution. 

• Thus preemptive SJF scheduling always compares the execution completion time (It is 
same as the remaining time for the new process) of a new process entered the 'Ready' 
queue with the remaining time for completion of the currently executing process and 
schedules the process with shortest remaining time for execution. 
• Preemptive SJF scheduling is also known as Shortest Remaining Time (SRT) scheduling .

83Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Preemptive SJF/SRT Scheduling - Example
• Three processes with process IDs P1, P2, P3 with estimated completion time 

10, 5, 7 milliseconds respectively enter the ready queue together. A new 
process P4 with estimated completion time 2 ms enters the 'Ready' queue 
after 2 ms. Assume all the processes contain only CPU operation and no I/O 
operations are involved. Calculate the waiting time and Turn Around Time (TAT) 
for each process and the average waiting time and Turn Around Time in the 
SRT scheduling.

84Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Preemptive SJF/SRT Scheduling –
Example (continued)

P1

P2

P3

85Shrishail Bhat, Dept. of ECE, AITM Bhatkal

P2 is scheduled

‘Ready’ queue at 0 ms

Remaining 
Time

10 ms

5 ms

7 ms

Process ID

P1

P2

P3

P4

‘Ready’ queue at 2 ms

Remaining 
Time

Process ID

10 ms

3 ms

7 ms

2 ms

P2 is preempted
P4 is scheduled

P1

P2

P3

‘Ready’ queue at 4 ms

Remaining 
Time

Process ID

10 ms

3 ms

7 ms

P4 is completed
P2 is scheduled

P1

P3

‘Ready’ queue at 7 ms

Remaining 
Time

Process ID

10 ms

7 ms

P2 is completed
P3 is scheduled

P1

‘Ready’ queue at 14 ms

Remaining 
Time

Process ID

10 ms

P3 is completed
P1 is scheduled



Preemptive SJF/SRT Scheduling –
Example (continued)
• The execution sequence can be written as below:

86Shrishail Bhat, Dept. of ECE, AITM Bhatkal

P2 P4 P2 P3 P1

Time (ms)



Preemptive SJF/SRT Scheduling –
Example (continued)
• The waiting time for all the processes are given as 

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃2 = 0 𝑚𝑠 + 4 − 2 𝑚𝑠 = 2 𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃4 = 0 𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃3 = 7 𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃1 = 14 𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =
𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

=
2+0+7+14

4
𝑚𝑠 =

23

4
𝑚𝑠

= 5.75 𝑚𝑠

87Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Preemptive SJF/SRT Scheduling –
Example (continued)
• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) = 𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑎𝑑𝑦 𝑞𝑢𝑒𝑢𝑒 + 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃2 = 2 𝑚𝑠 + 5 𝑚𝑠 = 7 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃4 = 0 𝑚𝑠 + 2 𝑚𝑠 = 2 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃3 = 7 𝑚𝑠 + 7 𝑚𝑠 = 14 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃1 = 14 𝑚𝑠 + 10 𝑚𝑠 = 24 𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) =
𝑇𝐴𝑇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

=
7+2+14+24

4
𝑚𝑠 =

47

4
𝑚𝑠

= 11.75 𝑚𝑠

88Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Round Robin (RR) Scheduling
• In Round Robin scheduling, each process in the 'Ready' queue is executed for a 

pre-defined time slot. 
• 'Round Robin' brings the message "Equal chance to all".

• The execution starts with picking up the first process in the 'Ready' queue.

• It is executed for a pre-defined time and when the pre-defined time elapses or 
the process completes (before the pre-defined time slice), the next process in 
the 'Ready' queue is selected for execution. 

• This is repeated for all the processes in the 'Ready' queue. 

• Once each process in the 'Ready' queue is executed for the pre-defined time 
period, the scheduler comes back and picks the first process in the 'Ready' 
queue again for execution. 

• The sequence is repeated. 

89Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Round Robin (RR) Scheduling (continued)
• The 'Ready' queue can be 

considered as a circular queue 
in which the scheduler picks up 
the first process for execution 
and moves to the next till the 
end of the queue and then 
comes back to the beginning of 
the queue to pick up the first 
process. 

90Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Process 4

Process 1

Process 3

Process 2

Execution Switch Execution Switch

Execution Switch Execution Switch



Round Robin (RR) Scheduling (continued)
• The time slice is provided by the timer tick feature of the time 

management unit of the OS kernel.

• Time slice is kernel dependent and it varies in the order of a few 
microseconds to milliseconds. 

• Round Robin scheduling ensures that every process gets a fixed amount 
of-CPU time for execution. 

• When the process gets its fixed time for execution is determined by the 
First Come First Serve (FCFS) policy.

• If a process terminates before the elapse of the time slice, the process 
releases the CPU voluntarily and the next process in the queue is 
scheduled for execution by the scheduler. 

91Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Round Robin (RR) Scheduling - Example
• Three processes with process IDs P1, P2, P3 with estimated completion time 6, 

4, 2 milliseconds respectively, enter the ready queue together in the order P1, 
P2, P3. Calculate the waiting time and Turn Around Time (TAT) for each process 
and the Average waiting time and Turn Around Time (Assuming there is no I/O 
waiting for the processes) in RR algorithm with Time slice = 2 ms. 

92Shrishail Bhat, Dept. of ECE, AITM Bhatkal



93Shrishail Bhat, Dept. of ECE, AITM Bhatkal

P1

P2

P3

P1 is scheduled

‘Ready’ queue at 0 ms

Remaining 
Time

6 ms

4 ms

2 ms

Process ID

P2

P3

P1

‘Ready’ queue at 2 ms

Remaining 
Time

Process ID

4 ms

2 ms

4 ms

P1 is preempted
P2 is scheduled

P3

P1

P2

‘Ready’ queue at 4 ms

Remaining 
Time

Process ID

2 ms

4 ms

2 ms

P2 is preempted
P3 is scheduled

P1

P2

‘Ready’ queue at 6 ms

Remaining 
Time

Process ID

4 ms

2 ms

P3 is completed
P1 is scheduled

P1 is preempted
P2 is scheduled

P2

P1

‘Ready’ queue at 8 ms

Remaining 
Time

Process ID

2 ms

2 ms

P1

‘Ready’ queue at 10 ms

Remaining 
Time

Process ID

2 ms

P2 is completed
P1 is scheduled



Round Robin (RR) Scheduling– Example 
(continued)
• The execution sequence can be written as below:

94Shrishail Bhat, Dept. of ECE, AITM Bhatkal

P1 P2 P3 P1 P2 P1

Time (ms)



Round Robin (RR) Scheduling – Example 
(continued)
• The waiting time for all the processes are given as 
• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃1 = 0𝑚𝑠 + 6 − 2 𝑚𝑠 + 10 − 8 𝑚𝑠 = 6𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃2 = 2 − 0 𝑚𝑠 + 8 − 4 𝑚𝑠 = 6 𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃3 = 4 − 0 = 4𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =
𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

=
6+6+4

3
𝑚𝑠 =

16

3
𝑚𝑠

= 5.33 𝑚𝑠

95Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Round Robin (RR) Scheduling – Example 
(continued)
• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) = 𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑎𝑑𝑦 𝑞𝑢𝑒𝑢𝑒 + 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃1 = 6 𝑚𝑠 + 6 𝑚𝑠 = 12 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃2 = 6 𝑚𝑠 + 4 𝑚𝑠 = 10 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃3 = 4 𝑚𝑠 + 2 𝑚𝑠 = 6 𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) =
𝑇𝐴𝑇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

=
12+10+6

3
𝑚𝑠 =

28

3
𝑚𝑠

= 9.33 𝑚𝑠

96Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Priority Based Scheduling
• The Priority Based Preemptive Scheduling ensures that a process with high priority is 

serviced at the earliest compared to other low priority processes in the ‘Ready’ queue.
• Any high priority process entering the 'Ready' queue is immediately scheduled for 

execution.

• The priority of a task/process can be indicated through various mechanisms.
• While creating the process/task, the priority can be assigned to it. 
• The priority number associated with a task/process is the direct indication of its 

priority. 
• The priority number 0 indicates the highest priority.
• This convention need not be universal and it depends on the kernel level 

implementation of the priority structure. 

• Whenever a new process enters the ‘Ready’ queue, the scheduler sorts the 'Ready' 
queue based on priority and picks the process with the highest level of priority for 
execution. 

97Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Priority Based Scheduling - Example
• Three processes with process IDs P1, P2, P3 with estimated completion time 

10, 5, 7 milliseconds and priorities 1, 3, 2 (0 – highest priority, 3 - lowest 
priority) respectively enter the ready queue together. A new process P4 with 
estimated completion time 6 ms and priority 0 enters the 'Ready' queue after 5 
ms of start of execution of P1. Calculate the waiting time and Turn Around 
Time (TAT) for each process and the Average waiting time and Turn Around 
Time (Assuming there is no I/O waiting for the processes) in priority based 
scheduling algorithm. 

98Shrishail Bhat, Dept. of ECE, AITM Bhatkal



99Shrishail Bhat, Dept. of ECE, AITM Bhatkal

P1

P2

P3

P1 is scheduled
P1 is preempted
P4 is scheduled

P4 is completed
P1 is scheduled

P1 is completed
P3 is scheduled

P3 is completed
P2 is scheduled

‘Ready’ queue at 0 ms

Remaining 
Time

10 ms

5 ms

7 ms

Process IDPriority

1

3

2

P1

P2

P3

‘Ready’ queue at 11 ms

Remaining 
Time

Process ID

5 ms

5 ms

7 ms

Priority

1

3

2

P2

P3

‘Ready’ queue at 16 ms

Remaining 
Time

Process ID

5 ms

7 ms

Priority

3

2

P2

‘Ready’ queue at 23 ms

Remaining 
Time

Process ID

5 ms

Priority

3

P1

P2

P3

P4

‘Ready’ queue at 5 ms

Remaining 
Time

Process ID

5 ms

5 ms

7 ms

Priority

1

3

2

0 6 ms



Priority Based Scheduling– Example 
(continued)
• The execution sequence can be written as below:

100Shrishail Bhat, Dept. of ECE, AITM Bhatkal

P1 P4 P1 P3 P2

Time (ms)



Priority Based Scheduling – Example 
(continued)
• The waiting time for all the processes are given as 
• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃1 = 0𝑚𝑠 + 11 − 5 𝑚𝑠 = 6𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃4 = 0𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃3 = 16𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃2 = 23𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =
𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

=
6+0+16+23

4
𝑚𝑠 =

45

4
𝑚𝑠

= 11.25 𝑚𝑠

101Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Priority Based Scheduling – Example 
(continued)
• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) = 𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑎𝑑𝑦 𝑞𝑢𝑒𝑢𝑒 + 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃1 = 6 𝑚𝑠 + 10 𝑚𝑠 = 16 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃4 = 0 𝑚𝑠 + 6 𝑚𝑠 = 6 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃3 = 16 𝑚𝑠 + 7 𝑚𝑠 = 23 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃2 = 23 𝑚𝑠 + 5 𝑚𝑠 = 28 𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) =
𝑇𝐴𝑇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

=
16+6+23+28

4
𝑚𝑠 =

73

4
𝑚𝑠

= 18.25 𝑚𝑠

102Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Communication

103Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Communication
• In a multitasking system, multiple tasks/processes run concurrently 

(in pseudo parallelism) and each process may or may not interact 
between. 

• Based on the degree of interaction, the processes running on an OS 
are classified as 
• Co-operating Processes: 
• One process requires the inputs from other processes to complete its execution. 

• Competing Processes: 
• The competing processes do not share anything among themselves but they share the 

system resources. 

• The competing processes compete for the system resources such as file, display device, etc. 

104Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Communication (continued)
• Co-operating processes exchanges information and communicate 

through the following methods:

• Co-operation through Sharing:

• The co-operating process exchange data through some shared resources. 

• Co-operation through Communication: 

• No data is shared between the processes. 

• But they communicate for synchronisation. 

105Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Communication (continued)
• The mechanism through which processes/tasks communicate each other 

is known as Inter Process/Task Communication (IPC). 
• Inter Process Communication is essential for process co-ordination. 

• The various types of Inter Process Communication (IPC) mechanisms 
adopted by process are kernel (Operating System) dependent. 

• Some of the important IPC mechanisms adopted by various kernels are:
• Shared Memory
• Pipes and Memory Mapped Objects

• Message Passing
• Message Queue, Mailbox and Signalling

• Remote Procedure Call and Sockets

106Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Shared Memory
• Processes share some area of the 

memory to communicate among them. 

• Information to be communicated by the 
process is written to the shared memory 
area. 

• Other processes which require this 
information can read the same from the 
shared memory area.

107Shrishail Bhat, Dept. of ECE, AITM Bhatkal

• Different mechanisms are adopted by different kernels for implementing the concept 
of shared memory:

• Pipes

• Memory Mapped Objects

Process 1
Shared 

memory area
Process 2

Fig.: Concept of Shared Memory



Pipes
• 'Pipe' is a section of the shared memory used by processes for 

communicating. 

• Pipes follow the client-server architecture. 
• A process which creates a pipe is known as a pipe server and a process 

which connects to a pipe is known as pipe client.

• A pipe can be considered as a conduit for information flow and has 
two conceptual ends. 

• It can be unidirectional, allowing information flow in one direction 
or bidirectional allowing bidirectional information flow. 

108Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Pipes (continued)
• A unidirectional pipe allows the process connecting at one end of 

the pipe to write to the pipe and the process connected at the 
other end of the pipe to read the data, whereas a bidirectional pipe 
allows both reading and writing at one end.

• The figure shows a unidirectional pipe.

109Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Pipe
(Named/unnamed)

Fig.: Concept of Pipe for IPC

Process 2
Read

Process 1
Write



Pipes (continued)
• The implementation of 'Pipes' is OS dependent. 

• Microsoft Windows supports two types of 'Pipes' for Inter Process Communication:

• Anonymous Pipes: 

• The anonymous pipes are unnamed, unidirectional pipes used for data transfer between two processes. 

• Named Pipes: 

• Named pipe is a named, unidirectional or bi-directional pipe for data exchange between processes. 

• Like anonymous pipes, the process which creates the named pipe is known as pipe server and a process 
which connects to the named pipe is known as pipe client. 

• With named pipes, any process can act as both client and server allowing point-to-point communication. 

• Named pipes can be used for communicating between processes running on the same machine or 
between processes running on different machines connected to a network. 

110Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Memory Mapped Objects
• Memory mapped object is a shared memory technique adopted by certain 

Real-Time Operating Systems for allocating a shared block of memory which 
can be accessed by multiple process simultaneously.

• In this approach, a mapping object is created and physical storage for it is 
reserved and committed. 

• A process can map the entire committed physical area or a block of it to its 
virtual address space. 

• All read and write operation to this virtual address space by a process is 
directed to its committed physical area. 

• Any process which wants to share data with other processes can map the 
physical memory area of the mapped object to its virtual memory space and 
use it for sharing the data. 

111Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Message Passing
• Message passing is an (a)synchronous information exchange mechanism used 

for Inter Process/Thread Communication.

• The major difference between shared memory and message passing technique 
is that, through shared memory lots of data can be shared whereas only 
limited amount of information/data is passed through message passing. 

• Also, message passing is relatively fast and free from the synchronisation overheads 
compared to shared memory. 

• Based on the message passing operation between the processes, message 
passing is classified into:

• Message Queue

• Mailbox

• Signalling

112Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Message Queue
• 'Message queue’ is a First-In-First-Out (FIFO) queue which stores the messages 

temporarily in a system defined memory object to pass it to the desired 
process.

• Usually the process which wants to talk to another process posts the message 
to a message queue.

• Messages are sent and received through send and receive methods.

• send (Name of the process to which the message is to be sent, message) 

• receive (Name of the process from which the message is to be received, message)

• The implementation of the message queue, send and receive methods are OS 
kernel dependent. 

113Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Message Queue (continued)

114Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Message Queue

Process 1 Process 2

Fig.: Concept of Message Queue based indirect messaging for IPC



Message Queue (continued)
• The Windows XP OS kernel maintains a single system message queue and one process/thread 

specific message queue. 

• A thread which wants to communicate with another thread posts the message to the system 
message queue. 

• The kernel picks up the message from the system message queue one at a time and examines 
the message for finding the destination thread and then posts the message to the message 
queue of the corresponding thread. 

• The messaging mechanism is classified into synchronous and asynchronous based on the 
behaviour of the message posting thread. 

• In asynchronous messaging, the message posting thread just posts the message to the queue 
and it will not wait for an acceptance (return) from the thread to which the message is posted.

• In synchronous messaging, the thread which posts a message enters waiting state and waits for 
the message result from the thread to which the message is posted. 
• The thread which invoked the send message becomes blocked and the scheduler will not pick it up for scheduling.

115Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Mailbox
• Mailbox is an alternate form of ‘Message queue’ and it is used in RTOS for IPC 

usually for one way messaging.

• The task/thread which wants to send a message to other tasks/threads creates 
a mailbox for posting the messages. 

• The threads which are interested in receiving the messages posted to the 
mailbox by the mailbox creator thread can subscribe to the mailbox. 

• The thread which creates the mailbox is known as 'mailbox server' and the 
threads which subscribe to the mailbox are known as 'mailbox clients’. 

• The mailbox server posts messages to the mailbox and notifies it to the clients 
which are subscribed to the mailbox. 

• The clients read the message from the mailbox on receiving the notification.

116Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Mailbox (continued)

117Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Mailbox

Task 2 Task 3 Task 4

Task 1

Post message

Broadcast 
message

Broadcast 
messageBroadcast 

message

Fig.: Concept of 
Mailbox based 
indirect messaging 
for IPC



Mailbox (continued)
• The mailbox creation, subscription, message reading and writing 

are achieved through OS kernel provided API calls. 

• Mailbox and message queues are same in functionality.

• The only difference is in the number of messages supported by them. 

• Both of them are used for passing data in the form of message(s) from a task 
to another task(s). 

• Mailbox is used for exchanging a single message between two tasks or 
between an Interrupt Service Routine (ISR) and a task. 

• Mailbox associates a pointer pointing to the mailbox and a wait list to hold 
the tasks waiting for a message to appear in the mailbox.

118Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Signalling
• Signalling is a primitive way of communication between 

processes/threads. 

• Signals are used for asynchronous notifications where one 
process/thread fires a signal, indicating the occurrence of a 
scenario which the other process(es)/thread(s) is waiting. 

• Signals are not queued and they do not carry any data. 

• E.g. Communication mechanisms used in RTX51 Tiny OS, inter 
process communication in VxWorks OS Kernel are examples for 
signalling.

119Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Remote Procedure Call (RPC) and Sockets
• Remote Procedure Call (RPC) is the Inter Process Communication (IPC) 

mechanism used by a process to call a procedure of another process running 
on the same CPU or on a different CPU which is interconnected in a network. 

• In the object oriented language terminology, RPC is also known as Remote 
Invocation or Remote Method Invocation (RMI). 

• RPC is mainly used for distributed applications like client-server applications. 

• With RPC it is possible to communicate over a heterogeneous network (i.e. 
Network where Client and server applications are running on different operating 
systems). 

• The CPU/process containing the procedure which needs to be invoked remotely is 
known as server. 

• The CPU/process which initiates an RPC request is known as client. 

120Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Remote Procedure Call (RPC) and Sockets 
(continued)

121Shrishail Bhat, Dept. of ECE, AITM Bhatkal

CPU CPU
Process Process

Procedure

Network

TCP/IP or UDP 
over Socket

Processes running on different CPUs 
which are networked 

Process 1 Process 2

Procedure

CPU

TCP/IP or UDP 
over Socket

Processes running on the same CPU

Fig.: Concept of Remote Procedure Call (RPC) for IPC



Remote Procedure Call (RPC) and Sockets 
(continued)
• It is possible to implement RPC communication with different invocation 

interfaces. 

• Interface Definition Language (IDL) defines the interfaces for RPC. 

• Microsoft Interface Definition Language (MIDL) is the IDL implementation from 
Microsoft for all Microsoft platforms. 

• The RPC communication can be either Synchronous (Blocking) or Asynchronous 
(Non-blocking). 

• In the Synchronous communication, the process which calls the remote procedure 
is blocked until it receives a response back from the other process. 

• In asynchronous RPC calls, the calling process continues its execution while the 
remote process performs the execution of the procedure. 
• The result from the remote procedure is returned back to the caller through mechanisms like 

callback functions. 

122Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Remote Procedure Call (RPC) and Sockets 
(continued)
• On security front, RPC employs authentication mechanisms to 

protect the systems against vulnerabilities. 

• The client applications (processes) should authenticate themselves 
with the server for getting access.

• Authentication mechanisms like IDs, public key cryptography (like 
DES, 3DES), etc. are used by the client for authentication. 

• Without authentication, any client can access the remote 
procedure. 
• This may lead to potential security risks. 

123Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Remote Procedure Call (RPC) and Sockets 
(continued)
• Sockets are used for RPC communication. 

• Socket is a logical endpoint in a two-way communication link between 
two applications running on a network. 

• A port number is associated with a socket so that the network layer of 
the communication channel can deliver the data to the designated 
application. 

• Sockets are of different types, namely, Internet sockets (INET), UNIX 
sockets, etc. 

• The INET socket works on internet communication protocol. 

• TCP/IP, UDP, etc. are the communication protocols used by INET sockets.

124Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Remote Procedure Call (RPC) and Sockets 
(continued)
• INET sockets are classified into: 

• Stream sockets 

• These are connection oriented and they use TCP to establish a reliable 
connection. 

• Datagram sockets 

• These rely on UDP for establishing a connection. 

• The UDP connection is unreliable when compared to TCP. 

125Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Remote Procedure Call (RPC) and Sockets 
(continued)
• The client-server communication model uses a socket at the client side and a 

socket at the server side. 
• A port number is assigned to both of these sockets. 
• The client and server should be aware of the port number associated with the 

socket. 

• In order to start the communication, the client needs to send a connection 
request to the server at the specified port number. 

• The client should be aware of the name of the server along with its port 
number. 

• The server always listens to the specified port number on the network. 
• Upon receiving a connection request from the client, based on the success of 

authentication, the server grants the connection request and a communication 
channel is established between the client and server. 

126Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Remote Procedure Call (RPC) and Sockets 
(continued)
• The client uses the host name and port number of server for sending 

requests and server uses the client's name and port number for sending 
responses. 

• If the client and server applications (both processes) are running on the 
same CPU, both can use the same host name and port number for 
communication. 

• The physical communication link between the client and server uses 
network interfaces like Ethernet or Wi-Fi for data communication. 

• The underlying implementation of socket is OS kernel dependent. 

• Different types of OSs provide different socket interfaces.

127Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Synchronisation

128Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Synchronisation Issues
• In a multitasking environment, multiple processes run concurrently 

(in pseudo parallelism) and share the system resources.

• The processes communicate with each other with different IPC 
mechanisms including shared memory and variables. 

• Imagine a situation where two processes try to access display 
hardware connected to the system or two processes try to access a 
shared memory area where one process tries to write to a memory 
location when the other process is trying to read from this. 
• This would result in unexpected results. 

• This can be solved by making each process aware of the access of a 
shared resource either directly or indirectly. 

129Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Synchronisation Issues (continued)
• The act of making processes aware of the access of shared 

resources by each process to avoid conflicts is known as  
‘Task/Process Synchronisation’. 

• Various task communication/synchronisation issues may arise in a 
multitasking environment if processes are not synchronised 
properly. 

• Racing

• Deadlock

130Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Racing
• Let us have a look at the following piece of code: 

131Shrishail Bhat, Dept. of ECE, AITM Bhatkal

#include<windows.h>

#include<stdio.h>

//*****************************************************************************

//counter is an integer variable and Buffer is a byte array 

//shared between two processes Process A and Process B

char Buffer[10] = {1,2,3,4,5,6,7,8,9,10};

short int counter = 0;

//*****************************************************************************

//Process A

void Process_A (void){

int i;

for (i=0; i<5; i++){

if (Buffer[i]>0)

counter++;

}

}



Racing (continued)

132Shrishail Bhat, Dept. of ECE, AITM Bhatkal

//*****************************************************************************

//Process B

void Process_B (void){

int j;

for (j=5; j<10; j++){

if (Buffer[j]>0)

counter++;

}

}

//*****************************************************************************

//Main Thread

int main(){

DWORD id;

CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Process_A,(LPVOID)0,0,&id);

CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Process_B,(LPVOID)0,0,&id);

Sleep(100000);

return 0;

}



Racing (continued)
• From a programmer perspective, the value of counter will be 10 at 

the end of execution of processes A & B. 

• But in a real world execution, the result depends on the process 
scheduling policies adopted by the OS kernel. 

• The program statement counter++; looks like a single statement 
from a high level programming language ('C' language) perspective. 

• The low level implementation of this statement is dependent on the 
underlying processor instruction set and the (cross) compiler in use. 

133Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Racing (continued)
• The low level implementation of the high level program statement counter++; 

under Windows XP operating system running on an Intel Centrino Duo 
processor is given below:

• Both the processes Process A and Process B contain the program statement 
counter++;

134Shrishail Bhat, Dept. of ECE, AITM Bhatkal

mov eax, dword ptr [ebp-4] ;Load counter in Accumulator

add eax, 1 ;Increment Accumulator by 1

mov dword ptr [ebp-4], eax ;Store counter with Accumulator

Process A Process B

mov eax, dword ptr [ebp-4] mov eax, dword ptr [ebp-4] 

add eax, 1 add eax, 1 

mov dword ptr [ebp-4], eax mov dword ptr [ebp-4], eax



Racing (continued)
• Imagine a situation where a process switching (context switching) 

happens from Process A to Process B when Process A is executing 
the counter++; statement. 

• Imagine that the process switching happened at the point where 
Process A executed the low level instruction, 'mov eax, dword
ptr [ebp-4]' and is about to execute the next instruction 'add 
eax, 1’. 

• The scenario is illustrated in the figure.

135Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Racing (continued)

136Shrishail Bhat, Dept. of ECE, AITM Bhatkal

……………………………………………………………………

mov eax, dword ptr [ebp-4]

add eax, 1

mov dword ptr [ebp-4], eax

……………………………………………………………………

……………………………………………………………………

mov eax, dword ptr [ebp-4]

add eax, 1

mov dword ptr [ebp-4], eax

…………………………………………………………………… 

Process A Process B

Context Switch

Context Switch

Fig.: Race Condition



Racing (continued)
• Process B increments the shared variable 'counter' in the middle of the 

operation where Process A tries to increment it. 
• When Process A gets the CPU time for execution, it starts from the point where 

it got interrupted.
• Though the variable counter is incremented by Process B, Process A is unaware 

of it and it increments the variable with the old value. 
• This leads to the loss of one increment for the variable counter. 

• This issue wouldn't have occurred if the underlying actions corresponding to 
the program statement counter++; is finished in a single CPU execution cycle. 

• The best way to avoid this situation is to make the access and modification of 
shared variables mutually exclusive.
• Meaning when one process accesses a shared variable, prevent the other processes 

from accessing it. 

137Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Racing (continued)
• To summarise, Racing or Race condition is the situation in which 

multiple processes compete (race) each other to access and 
manipulate shared data concurrently. 

• In a Race condition, the final value of the shared data depends on 
the process which acted on the data finally. 

138Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Deadlock
• A race condition produces 

incorrect results, whereas a 
deadlock condition creates a 
situation where none of the 
processes are able to make any 
progress in their execution, 
resulting in a set of deadlocked 
processes. 

• This is similar to traffic jam issues 
in a junction as illustrated in the 
figure.

139Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig.: Deadlock Visualisation



Deadlock (continued)
• In its simplest form, deadlock is the condition 

in which a process is waiting for a resource 
held by another process which is waiting for 
a resource held by the first process.

• Process A holds a resource x and it wants a 
resource y held by Process B. 

• Process B is currently holding resource y and 
it wants the resource x which is currently 
held by Process A. 

• Both hold the respective resources and they 
compete each other to get the resource held 
by the respective processes. 

• The result of the competition is 'deadlock'. 

140Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Process A Process B

Resource x

Resource y

Fig.: Scenario leading to deadlock

• None of the competing process will be able to access the resources held by other processes 
since they are locked by the respective processes.



Deadlock (continued)
• The different conditions favouring a deadlock situation are:

• Mutual Exclusion: 

• The criteria that only one process can hold a resource at a time. 

• Meaning processes should access shared resources with mutual exclusion. 

• Typical example is the accessing of display hardware in an embedded device. 

• Hold and Wait: 

• The condition in which a process holds a shared resource by acquiring the lock controlling 
the shared access and waiting for additional resources held by other processes. 

• No Resource Preemption: 

• The criteria that operating system cannot take back a resource from a process which is 
currently holding it and the resource can only be released voluntarily by the process 
holding it. 

141Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Deadlock (continued)
• Circular Wait: 

• A process is waiting for a resource which is currently held by another process which in 
turn is waiting for a resource held by the first process. 

• In general, there exists a set of waiting process P0, P1 ... Pn with P0 is waiting for a 
resource held by P1 and P1 is waiting for a resource held by P2 ,…., Pn is waiting for a 
resource held by P0 and P0 is waiting for a resource held by Pn and so on.

• This forms a circular wait queue. 

• 'Deadlock' is a result of the combined occurrence of these four conditions 
listed above. 

• These conditions were first described by E. G. Coffman in 1971 and it is popularly 
known as Coffman conditions. 

142Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Deadlock Handling
• A smart OS may foresee the deadlock condition and will act proactively to 

avoid such a situation. 

• If a deadlock occurs, the reaction to it by OS is nonuniform. 

• The OS may adopt any of the following techniques to detect and prevent 
deadlock conditions. 

• Ignore Deadlocks: 

• Always assume that the system design is deadlock free. 

• This is acceptable for the reason that the cost of removing a deadlock is large compared to the 
chance of happening a deadlock. 

• UNIX is an example for an OS following this principle. 

• A life critical system cannot pretend that it is deadlock free for any reason. 

143Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Deadlock Handling (continued)
• Detect and Recover: 

• This approach suggests the detection of a deadlock 
situation and recovery from it. 

• This is similar to the deadlock condition that may 
arise at a traffic junction. 

• When the vehicles from different directions compete 
to cross the junction, deadlock (traffic jam) condition 
is resulted. 

• Once a deadlock (traffic jam) has happened at the 
junction, the only solution is to back up the vehicles 
from one direction and allow the vehicles from 
opposite direction to cross the junction. 

• If the traffic is too high, lots of vehicles may have to 
be backed up to resolve the traffic jam. 

• This technique is also known as 'back up cars' 
technique.

144Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig.: ‘Back up cars' technique for deadline recovery 



Deadlock Handling (continued)
• Operating systems keep a resource graph in their memory. 

• The resource graph is updated on each resource request and release. 

• A deadlock condition can be detected by analysing the resource graph by graph analyser algorithms. 

• Once a deadlock condition is detected, the system can terminate a process or preempt the resource 
to break the deadlocking cycle.

• Avoid Deadlocks: 

• Deadlock is avoided by the careful resource allocation techniques by the Operating System. 

• It is similar to the traffic light mechanism at junctions to avoid the traffic jams. 

• Prevent Deadlocks: 

• Prevent the deadlock condition by negating one of the four conditions favouring the deadlock 
situation. 

145Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Deadlock Handling (continued)
• Ensure that a process does not hold any other resources when it requests a resource. 

1. A process must request all its required resource and the resources should be allocated before 
the process begins its execution. 

2. Grant resource allocation requests from processes only if the process does not hold a resource 
currently. 

• Ensure that resource preemption (resource releasing) is possible at operating system level. 

1. Release all the resources currently held by a process if a request made by the process for anew 
resource is not able to fulfil immediately. 

2. Add the resources which are preempted (released) to a resource list describing the resources 
which the process requires to complete its execution. 

3. Reschedule the process for execution only when the process gets its old resources and the new 
resource which is requested by the process. 

146Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Deadlock (continued)
• Livelock

• The Livelock condition is similar to the deadlock condition except that a process in 
livelock condition changes its state with time. 

• While in deadlock a process enters in wait state for a resource and continues in that 
state forever without making any progress in the execution, in a livelock condition a 
process always does something but is unable to make any progress in the execution 
completion. 

• The livelock condition is better explained with the real world example, two people 
attempting to cross each other in a narrow corridor. 
• Both the persons move towards each side of the corridor to allow the opposite person to cross. 

• Since the corridor is narrow, none of them are able to cross each other. 

• Here both of the persons perform some action but still they are unable to achieve their target, cross 
each other. 

147Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Deadlock (continued)
• Starvation 

• In the multitasking context, starvation is the condition in which a process 
does not get the resources required to continue its execution for a long time. 

• As time progresses, the process starves on resource. 

• Starvation may arise due to various conditions like byproduct of preventive 
measures of deadlock, scheduling policies favouring high priority tasks and 
tasks with shortest execution time, etc. 

148Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Synchronisation Techniques
• Process/Task synchronisation is essential for 

1. Avoiding conflicts in resource access (racing, deadlock, starvation, livelock, 
etc.) in a multitasking environment. 

2. Ensuring proper sequence of operation across processes.

3. Communicating between processes.

• The code memory area which holds the program instructions (piece 
of code) for accessing a shared resource (like shared memory, 
shared variables, etc.) is known as ‘critical section’. 

• In order to synchronise the access to shared resources, the access to the 
critical section should be exclusive.

149Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Synchronisation Techniques 
(continued)
• The exclusive access to critical section of code is provided through mutual exclusion 

mechanism.

• Consider two processes Process A and Process B running on a multitasking system. 

• Process A is currently running and it enters its critical section. 

• Before Process A completes its operation in the critical section, the scheduler 
preempts Process A and schedules Process B for execution (Process B is of higher 
priority compared to Process A). 

• Process B also contains the access to the critical section which is already in use by 
Process A. 

• If Process B continues its execution and enters the critical section which is already in 
use by Process A, a racing condition will be resulted. 

• A mutual exclusion policy enforces mutually exclusive access of critical sections. 

150Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Task Synchronisation Techniques 
(continued)
• Mutual exclusion blocks a process. 

• Based on the behaviour of the blocked process, mutual exclusion 
methods can be classified into two categories:

• Mutual Exclusion through Busy Waiting/Spin Lock

• Mutual Exclusion through Sleep & Wakeup

151Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Mutual Exclusion through Sleep & 
Wakeup
• When a process is not allowed to access the critical section, which is 

currently being locked by another process, the process undergoes 'Sleep' 
and enters the 'blocked' state. 

• The process which is blocked on waiting for access to the critical section 
is awakened by the process which currently owns the critical section. 

• The process which owns the critical section sends a wakeup message to 
the process, which is sleeping as a result of waiting for the access to the 
critical section, when the process leaves the critical section.

• The ‘Sleep & Wakeup' policy for mutual exclusion can be implemented in 
different ways.
• Windows XP/CE OS kernels use semaphores for ‘Sleep & Wakeup’ policy

implementation for mutual exclusion.

152Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Semaphore
• Semaphore is a ‘Sleep & Wakeup’ based mutual exclusion implementation for 

shared resource access. 

• Semaphore is a system resource and the process which wants to access the 
shared resource can first acquire this system object to indicate the other 
processes which wants the shared resource that the shared resource is 
currently acquired by it. 

• The resources which are shared among a process can be either for exclusive 
use by a process or for using by a number of processes at a time. 

• The display device of an embedded system is a typical example for the shared 
resource which needs exclusive access by a process. 

• The Hard disk (secondary storage) of a system is a typical example for sharing the 
resource among a limited number of multiple processes. 

153Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Semaphore (continued)
• Based on the implementation of the sharing limitation of the shared 

resource, semaphores are classified into two, namely 'Binary Semaphore'
and 'Counting Semaphore’.

• The Binary Semaphore provides exclusive access to shared resource by 
allocating the resource to a single process at a time and not allowing the 
other processes to access it when it is being owned by a process. 
• Under certain OS kernel, it is referred as mutex.

• The Counting Semaphore limits the access of resources by a fixed 
number of processes/threads. 
• Counting Semaphore maintains a count between zero and a value. 
• It limits the usage of the resource to the maximum value of the count 

supported by it.

154Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Counting Semaphore
• The Counting Semaphore limits the access of resources by a fixed number of 

processes/threads. 

• Counting Semaphore maintains a count between zero and a value. 

• It limits the usage of the resource to the maximum value of the count supported by it.

• The state of the counting semaphore object is set to 'signalled' when the count of the 
object is greater than zero. 

• The count associated with a 'Semaphore object' is decremented by one when a 
process/thread acquires it and the count is incremented by one when a 
process/thread releases the 'Semaphore object’. 

• The state of the 'Semaphore object' is set to ‘non-signalled’ when the semaphore is 
acquired by the maximum number of processes/threads that the semaphore can 
support (i.e. when the count associated with the 'Semaphore object' becomes zero).

155Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Counting Semaphore (continued)
• A real world example for the counting semaphore concept is the dormitory system for 

accommodation, as shown in the figure.

• A dormitory contains a fixed number of beds (say 5) and at any point of time it can be 
shared by the maximum number of users supported by the dormitory. 

• If a person wants to avail the dormitory facility, he/she can contact the dormitory 
caretaker for checking the availability. 

• If beds are available in the dorm, the caretaker will hand over the keys to the user. 

• If beds are not available currently, the user can register his/her name to get notifications 
when a slot is available. 

• Those who are availing the dormitory share the dorm facilities like TV, telephone, 
toilet, etc. 

• When a dorm user vacates, he/she gives the keys back to the caretaker. 

• The caretaker informs the users, who booked in advance, about the dorm availability. 

156Shrishail Bhat, Dept. of ECE, AITM Bhatkal



157Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig.: The Concept of 
Counting Semaphore

Process A

Shared Memory
(Critical Section)



Counting Semaphore vs. Binary 
Semaphore
• Counting Semaphores are similar to Binary Semaphores in 

operation. 

• The only difference between Counting Semaphore and Binary 
Semaphore is that 

• Binary Semaphore can only be used for exclusive access, whereas

• Counting Semaphores can be used for both 

• exclusive access (by restricting the maximum count value associated with the semaphore 
object to one at the time of creation of the semaphore object) and

• limited access (by restricting the maximum count Value associated with the semaphore 
object to the limited number at the time of creation of the semaphore object)

158Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Binary Semaphore (Mutex)
• Binary Semaphore (Mutex) is a synchronisation object provided by 

OS for process/thread synchronisation. 

• Any process/thread can create a 'mutex object' and other 
processes/threads of the system can use this 'mutex object' for 
synchronising the access to critical sections. 

• Only one process/thread can own the 'mutex object' at a time. 

• The state of a mutex object is set to ‘signalled’ when it is not owned 
by any process/thread, and set to ‘non-signalled’ when it is owned 
by any process/thread.

159Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Binary Semaphore (Mutex) (continued)
• A real world example for the mutex concept is the hotel accommodation system 

(lodging system), as shown in the figure.
• The rooms in a hotel are shared for the public. 
• Any user who pays and follows the norms of the hotel can avail the rooms for 

accommodation. 
• A person wants to avail the hotel room facility can contact the hotel reception for 

checking the room availability.
• If room is available, the receptionist will handover the room key to the user. 

• If room is not available currently, the user can book the room to get notifications when a 
room is available. 

• When a person gets a room, he/she is granted the exclusive access to the room 
facilities like TV, telephone, toilet, etc. 

• When a user vacates the room, he/she gives the keys back to the receptionist. 
• The receptionist informs the users, who booked in advance, about the room's availability. 

160Shrishail Bhat, Dept. of ECE, AITM Bhatkal



161Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Process A

Shared Memory
(Critical Section)

Fig.: The Concept of 
Binary Semaphore 
(Mutex)



How to Choose an RTOS

162Shrishail Bhat, Dept. of ECE, AITM Bhatkal



How to Choose an RTOS
• The decision of choosing an RTOS for an embedded design is very 

crucial. 

• A lot of factors needs to be analysed carefully before making a 
decision on the selection of an RTOS. 

• The requirements that needs to be analysed in the selection of an 
RTOS for an embedded design fall under two categories:

• Functional requirements 

• Non-functional requirements

163Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Functional Requirements 
• Processor Support 
• It is not necessary that all RTOS's support all kinds of processor 

architecture. 

• It is essential to ensure the processor support by the RTOS. 

• Memory Requirements 
• The OS requires ROM memory for holding the OS files and it is 

normally stored in a non-volatile memory like FLASH. 

• OS also requires working memory RAM for loading the OS services. 

• Since embedded systems are memory constrained, it is essential to 
evaluate the minimal ROM and RAM requirements for the OS under 
consideration. 

164Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Functional Requirements (continued) 
• Real-time Capabilities 
• It is not mandatory that the operating system for all embedded systems need to 

be Real-time and all embedded Operating systems are 'Real-time’ in behaviour. 

• The task/process scheduling policies plays an important role in the 'Real-time' 
behaviour of an OS. 

• Analyse the real-time capabilities of the OS under consideration and the 
standards met by the operating system for real-time capabilities. 

• Kernel and Interrupt Latency 
• The kernel of the OS may disable interrupts while executing certain services and 

it may lead to interrupt latency. 

• For an embedded system whose response requirements are high, this latency 
should be minimal.

165Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Functional Requirements (continued) 
• Inter Process Communication and Task Synchronisation 
• The implementation of Inter Process Communication and Synchronisation is 

OS kernel dependent. 

• Certain kernels may provide a bunch of options whereas others provide very 
limited options. 

• Modularisation Support 
• Most of the operating systems provide a bunch of features. 
• At times it may not be necessary for an embedded product for its functioning. 

• It is very useful if the OS supports modularisation where in the developer 
can choose the essential modules and re-compile the OS image for 
functioning. 

• Windows CE is an example for a highly modular operating system. 

166Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Functional Requirements (continued) 
• Support for Networking and Communication 
• The OS kernel may provide stack implementation and driver support for a bunch of 

communication interfaces and networking. 
• Ensure that the OS under consideration provides support for all the interfaces 

required by the embedded product. 

• Development Language Support 
• Certain operating systems include the run time libraries required for running 

applications written in languages like Java and C#. 
• A Java Virtual Machine (JVM) customised for the Operating System is essential for running java 

applications. 

• Similarly the .NET Compact Framework (.NETCF) is required for running Microsoft .NET 
applications on top of the Operating System. 

• The OS may include these components as built-in component, if not, check the 
availability of the same from a third party vendor for the OS under consideration.

167Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Non-Functional Requirements 
• Custom Developed or Off the Shelf 
• Depending on the OS requirement, it is possible to go for the complete 

development of an operating system suiting the embedded system 
needs or use an off the shelf, readily available operating system, which 
is either a commercial product or an Open Source product, which is in 
close match with the system requirements. 

• Sometimes it may be possible to build the required features by 
customising an Open source OS. 

• The decision on which to select is purely dependent on the 
development cost, licensing fees for the OS, development time and 
availability of skilled resources.

168Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Non-Functional Requirements 
(continued) 
• Cost 

• The total cost for developing or buying the OS and maintaining it in 
terms of commercial product and custom build needs to be evaluated 
before taking a decision on the selection of OS. 

• Development and Debugging Tools Availability 

• The availability of development and debugging tools is a critical 
decision making factor in the selection of an OS for embedded design. 

• Certain Operating Systems may be superior in performance, but the 
availability of tools for supporting the development may be limited. 

• Explore the different tools available for the OS under consideration. 

169Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Non-Functional Requirements 
(continued) 
• Ease of Use 

• How easy it is to use a commercial RTOS is another important feature 
that needs to be considered in the RTOS selection. 

• After Sales 

• For a commercial embedded RTOS, after sales in the form of e-mail, 
on-call services, etc. for bug fixes, critical patch updates and support 
for production issues, etc. should be analysed thoroughly.

170Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Integration and Testing 
of Embedded Hardware 
and Firmware

171Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Integration and Testing of Embedded Hardware 
and Firmware – Introduction
• Integration and testing of the embedded hardware and firmware is the 

immediate step following the embedded hardware and firmware 
development.

• Embedded hardware and firmware are developed in various steps.

• The final embedded hardware constitute of a PCB with all necessary 
components affixed to it as per the original schematic diagram. 

• Embedded firmware represents the control algorithm and configuration data 
necessary to implement the product requirements on the product. 

• The target embedded hardware without embedding the firmware is a 
dumb device and cannot function properly. 
• If you power up the hardware without embedding the firmware, the device 

may behave in an unpredicted manner.

172Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Integration and Testing of Embedded Hardware 
and Firmware – Introduction (continued)

• Both embedded hardware and firmware should be independently 
tested (Unit Tested) to ensure their proper functioning. 

• Functioning of individual hardware sections can be done by writing 
small utilities which checks the operation of the specified part. 

• As far as the embedded firmware is concerned, its targeted 
functionalities can easily be checked by the simulator environment 
provided by the embedded firmware development tool’s IDE 
(Integrated Development Environment).

173Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Integration of Hardware and Firmware
• Integration of hardware and firmware deals with the embedding of firmware into the 

target hardware board. 

• It is the process of 'Embedding Intelligence' to the product.

• For non-operating system based embedded products, if the processor/controller 
contains internal memory and the total size of the firmware is fitting into the code 
memory area, the code memory is downloaded into the target controller/processor. 

• If the processor/controller does not support built in code memory or the size of the 
firmware is exceeding the memory size supported by the target processor/controller, 
an external dedicated EPROM/FLASH memory chip is used for holding the firmware. 

• This chip is interfaced to the processor/controller. 

• A variety of techniques are used for embedding the firmware into the target board.

174Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Out-of-Circuit Programming
• Out-of-circuit programming is performed 

outside the target board. 

• The processor or memory chip into which 
the firmware needs to be embedded is 
taken out of the target board and it is 
programmed with the help of a 
programming device (also called 
programmer).

175Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig.: Firmware Embedding Tool –
Device Programmer: LabTool-48UXP

• The programming device is a dedicated unit which contains the 
necessary hardware circuit to generate the programming signals.



Out-of-Circuit Programming (continued)
• The programmer contains a ZIF socket 

with locking pin to hold the device to be 
programmed. 

• The programming device will be under 
the control of a utility program running 
on a PC. 

• Usually the programmer is interfaced to 
the PC through RS-232C/USB/Parallel 
Port Interface. 

• The commands to control the 
programmer are sent from the utility 
program to the programmer through the 
interface.

176Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig.: Universal Programmer



Out-of-Circuit Programming (continued)

177Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig.: Interfacing of Device Programmer with PC



Out-of-Circuit Programming (continued)
• The sequence of operations for embedding the firmware with a 

programmer is listed below:
1. Connect the programming device to the specified port of PC (USB/COM 

port/parallel port).

2. Power up the device (Ensure that the power indication LED is ON).

3. Execute the programming utility on the PC and ensure proper connectivity 
is established between PC and programmer. In case of error, turn off 
device power and try connecting it again.

4. Unlock the ZIF socket by turning the lock pin.

5. Insert the device to be programmed into the open socket.

6. Lock the ZIF socket.

178Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Out-of-Circuit Programming (continued)
7. Select the device name from the list of supported devices.

8. Load the hex file which is to be embedded into the device.

9. Program the device by 'Program' option of utility program.

10. Wait till the completion of programming operation (Till busy LED of 
programmer is OFF).

11. Ensure that programming is successful by checking the status LED on 
the programmer (Usually 'Green' for success and 'Red' for error 
condition) or by noticing the feedback from the utility program.

12. Unlock the ZIF socket and take the device out of programmer.

179Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Out-of-Circuit Programming (continued)
• Once the firmware is successfully embedded into the device, insert the 

device into the board, power up the board and test it for the required 
functionalities.

• If you want the firmware to be protected against unwanted external 
access, and if the device is supporting memory protection, enable the 
memory protection on the utility before programming the device. 

• The programmer usually erases the existing content of the chip before 
programming the chip. 
• Only EEPROM and FLASH memory chips are erasable by the programmer. 
• Some old embedded systems may be built around UVEPROM chips and such 

chips should be erased using a separate 'UV Chip Eraser' before 
programming. 

180Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Out-of-Circuit Programming (continued)
• Drawbacks
• The major drawback of out-of-circuit programming is the high development 

time. 
• Whenever the firmware is changed, the chip should be taken out of the development 

board for re-programming. 

• This is tedious and prone to chip damages due to frequent insertion and removal. 

• The programmer facilitates programming of only one chip at a time and it is not suitable 
for batch production. 

• Can be resolved using a 'Gang Programmer’, which contains multiple ZIF sockets (4 to 8) 
and capable of programming multiple devices at a time. 

• But it is bit expensive compared to an ordinary programmer. 

• Another big drawback of out-of-circuit programming is that once the product is 
deployed in the market in a production environment, it is very difficult to upgrade 
the firmware. 

181Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Out-of-Circuit Programming (continued)

182Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig.: Gang Programmer



Out-of-Circuit Programming (continued)
• Applications

• The out-of-system programming technique is used for firmware 
integration for low end embedded products which runs without an 
operating system. 

• Out-of-circuit programming is commonly used for development of low 
volume products and Proof of Concept (PoC) product Development. 

183Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In System Programming (ISP)
• Here, the programming is done 'within the system', meaning the 

firmware is embedded into the target device without removing it from 
the target board. 

• It is the most flexible and easy way of firmware embedding. 
• The only pre-requisite is that the target device must have an ISP support. 

• Apart from the target board, PC, ISP cable and ISP utility, no other 
additional hardware is required for ISP.

• The target board can be interfaced to the utility program running on PC 
through Serial Port/Parallel Port/USB. 

• The communication between the target device and ISP utility will be in a 
serial format. 
• The serial protocols used for ISP may be 'Joint Test Action Group (JTAG)' or 

'Serial Peripheral Interface (SPI)' or any other proprietary protocol.

184Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In System Programming (ISP) (continued)
• In order to perform ISP operations, the target device should be 

powered up in a special ‘ISP mode’. 

• ISP mode allows the device to communicate with an external host, 
such as a PC or terminal, through a serial interface.

• The device receives commands and data from the host, erases and 
reprograms code memory according to the received command.

• Once the ISP operations are completed, the device is re-configured 
so that it will operate normally by applying a reset or a re-power 
up. 

185Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In System Programming (ISP) (continued)
• Devices with SPI - In System Programming support contains a built-

in SPI interface (Serial Peripheral Interface) and the on-chip 
EEPROM or FLASH memory is programmed through this interface. 

• The primary I/O lines involved in SPI - In System Programming are:

• MOSI - Master Out Slave In 

• MISO - Master In Slave Out 

• SCK - System Clock 

• RST - Reset of Target Device 

• GND - Ground of Target Device 

186Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In System Programming (ISP) (continued)
• PC acts as the master and target device acts as the slave in ISP. 

• The program data is sent to the MOSI pin of target device and the device 
acknowledgement is originated from the MISO pin of the device. 

• SCK pin acts as the clock for data transfer. 

• Since the target device works under a supply voltage less than 5V 
(TTL/CMOS), it is better to connect these lines of the target device with 
the parallel port of the PC. 

• Since parallel port operations are also at 5V logic, no need for any other 
intermediate hardware for signal conversion.

• Standard SPI-ISP utilities are feely available on the internet and there is 
no need for going for writing own program. 

187Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In System Programming (ISP) (continued)
• For ISP operations, target device needs to be powered up in a pre-defined sequence. 

• The power up sequence for In System Programming for Atmel's AT89S series microcontroller 
family is listed below:
1. Apply supply voltage between VCC and GND pins of target chip. 

2. Set RST pin to "HIGH" state. 

3. If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 24 MHz clock to XTAL1 pin 
and wait for at least 10 milliseconds. 

4. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5. 
The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at 
XTAL1 divided by 40. 

5. The Code or Data array is programmed one byte at a time by supplying the address and data together 
with the appropriate Write instruction. The selected memory location is first erased before the new 
data is written. The write cycle is self-timed and typically takes less than 2.5 ms at 5V. 

6. Any memory location can be verified by using the Read instruction, which returns the content at the 
selected address at serial output MISO/P1 .6. 

7. After successfully programming the device, set RST pin low or turn off the chip power supply and turn 
it ON to commence the normal operation. 

188Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In System Programming (ISP) (continued)
• The key player behind ISP is a factory programmed memory (ROM) called 

'Boot ROM’.

• The Boot ROM normally resides at the top end of code memory space 
and it varies in the order of a few Kilo Bytes.
• It contains a set of Low-level Instruction APIs and these APIs allow the 

processor/controller to perform the FLASH memory programming, erasing and 
reading operations. 

• By default the Reset vector starts the code memory execution at location 
0000H. 

• If the ISP mode is enabled through the special ISP Power up sequence, 
the execution will start at the Boot ROM vector location. 

189Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In System Programming (ISP) (continued)
• In System Programming technique is the best advised programming 

technique for development work since the effort required to re-
program the device in case of firmware modification is very little. 

• Firmware upgrades for products supporting ISP is quite simple. 

190Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In Application Programming
• In Application Programming (IAP) is a technique used by the 

firmware running on the target device for modifying a selected 
portion of the code memory. 

• It is not a technique for first time embedding of user written 
firmware. 

• It modifies the program code memory under the control of the 
embedded application. 

• Updating calibration data, look-up tables, etc., which are stored in 
code memory, are typical examples of IAP. 

191Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In Application Programming (continued)
• The Boot ROM resident API instructions which perform various functions 

such as programming, erasing, and reading the Flash memory during ISP-
mode, are made available to the end-user written firmware for IAP. 
• Thus, it is possible for an end-user application to perform operations on the 

Flash memory. 

• A common entry point to these API routines is provided for interfacing 
them to the end-user's application. 

• Functions are performed by setting up specific registers as required by a 
specific operation and performing a call to the common entry point. 
• Like any other subroutine call, after completion of the function, control will 

return to the end-user's code. 

192Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In Application Programming (continued)
• The Boot ROM is shadowed with the user code memory in its 

address range. 

• This shadowing is controlled by a status bit. 

• When this status bit is set, accesses to the internal code memory in 
this address range will be from the Boot ROM. 

• When cleared, accesses will be from the user's code memory. 

• Hence the user should set the status bit prior to calling the 
common entry point for IAP operations.

193Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Use of Factory Programmed Chip
• It is possible to embed the firmware into the target processor/controller 

memory at the time of chip fabrication itself. 
• Such chips are known as 'Factory programmed chips’. 

• Once the firmware design is over and the firmware achieved operational 
stability, the firmware files can be sent to the chip fabricator to embed it 
into the code memory. 

• Factory programmed chips are convenient for mass production 
applications and it greatly reduces the product development time. 

• It is not recommended to use factory programmed chips for 
development purpose where the firmware undergoes frequent changes. 

• Factory programmed ICs are bit expensive. 

194Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Firmware Loading for Operating System 
Based Devices 
• The OS based embedded systems are programmed using the In System 

Programming (ISP) technique. 

• OS based embedded systems contain a special piece of code called 'Boot 
loader' program which takes control of the OS and application firmware 
embedding and copying of the OS image to the RAM of the system for 
execution. 

• The boot loader for such embedded systems comes as pre-loaded or it 
can be loaded to the memory using the various interface supported like 
JTAG. 

• The boot loader contains necessary driver initialisation implementation 
for initialising the supported interfaces like UART, TCP/IP etc. 

195Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Firmware Loading for Operating System 
Based Devices (continued) 
• Boot loader implements menu options for selecting the source for OS 

image to load.

• E.g. Load from FLASH ROM, Load from Network, Load through UART etc.

• In case of the network based loading, the boot loader broadcasts the 
target's presence over the network and the host machine on which the 
OS image resides can identify the target device by capturing this 
message. 

• Once a communication link is established between the host and target 
machine, the OS image can be directly downloaded to the FLASH memory of 
the target device. 

196Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Embedded System 
Development 
Environment

197Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Embedded System Development 
Environment – Block Diagram
• The embedded system development environment consists of:

• A Development Computer (PC) or Host, which acts as the heart of the development 
environment,

• Integrated Development Environment (IDE) Tool for embedded firmware 
development and debugging,

• Electronic Design Automation (EDA) Tool for Embedded Hardware design, 

• An emulator hardware for debugging the target board,

• Signal sources (like Function generator) for simulating the inputs to the target board,

• Target hardware debugging tools (Digital CRO, Multimeter, Logic Analyser, etc.) and

• The target hardware.

198Shrishail Bhat, Dept. of ECE, AITM Bhatkal



199Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig.: The Embedded System 
Development Environment



Embedded System Development 
Environment – Block Diagram (continued)
• The Integrated Development Environment (IDE) and Electronic Design 

Automation (EDA) tools are selected based on the target hardware 
development requirement and they are supplied as Installable files in CDs 
by vendors. 

• These tools need to be installed on the host PC used for development 
activities. 

• These tools can be either freeware or licensed copy or evaluation versions. 

• Licensed versions of the tools are fully featured and fully functional whereas 
trial versions fall into two categories, tools with limited features, and full 
featured copies with limited period of usage. 

200Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Integrated Development Environment 
(IDE) 
• In embedded system development context, Integrated 

Development Environment (IDE) stands for an integrated 
environment for developing and debugging the target processor 
specific embedded firmware.

• IDE is a software package which bundles a 
• Text Editor (Source Code Editor),

• Cross-compiler (for cross platform development and compiler for same 
platform development),

• Linker and

• Debugger.

201Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Integrated Development Environment 
(IDE) (continued) 
• IDEs used in embedded firmware development are slightly different from the 

generic IDEs used for high level language based development for desktop 
applications. 

• In embedded applications, the IDE is either supplied by the target 
processor/controller manufacturer or by third party vendors or as Open 
Source. 

• Keil µVision from Keil software is an example for a third party IDE, which is used for 
developing embedded firmware for 8051 family microcontrollers and also ARM 
microcontrollers.

• MPLAB is an IDE tool supplied by microchip for developing embedded firmware 
using their PIC family of microcontrollers. 

• CodeWarrior by Metrowerks is an example of IDE for ARM family of processors. 

202Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Disassembler/Decompiler
• Disassembler is a utility program which converts machine codes into target 

processor specific Assembly codes/instructions. 

• The process of converting machine codes into Assembly code is known as 
'Disassembling’. 

• In operation, disassembling is complementary to assembling/cross-assembling. 

• Decompiler is the utility program for translating machine codes into 
corresponding high level language instructions. 

• Decompiler performs the reverse operation of compiler/cross-compiler. 

• The disassemblers/decompilers for different family of processors/controllers 
are different. 

203Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Disassembler/Decompiler (continued)
• Disassemblers/Decompilers are deployed in reverse engineering. 

• Reverse engineering is the process of revealing the technology behind 
the working of a product. 

• Reverse engineering in Embedded Product development is employed to 
find out the secret behind the working of popular proprietary products. 

• Disassemblers/Decompilers help the reverse engineering process by 
translating the embedded firmware into Assembly/high level language 
instructions. 

• Disassemblers/Decompilers are powerful tools for analysing the 
presence of malicious codes (virus information) in an executable image.

204Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Simulators
• Simulator is a software tool used for simulating the various conditions 

for checking the functionality of the application firmware. 
• The Integrated Development Environment (IDE) itself will be providing 

simulator support and they help in debugging the firmware for checking 
its required functionality. 

• Simulators simulate the target hardware and the firmware execution can 
be inspected using simulators. 

• The features of simulator based debugging are:
• Purely software based 
• Doesn't require a real target system 
• Very primitive (Lack of featured I/O support. Everything is a simulated one) 
• Lack of Real-time behaviour 

205Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Simulators (continued)
• Advantages of Simulator Based Debugging
• Simulator based debugging techniques are simple and straightforward. 

• The major advantages of simulator based firmware debugging 
techniques are:

• No Need for Original Target Board 
• Simulator based debugging technique is purely software oriented. 

• IDE's software support simulates the CPU of the target board. 

• User only needs to know about the memory map of various devices within the target 
board and the firmware should be written on the basis of it. 

• Since the real hardware is not required, firmware development can start well in advance 
immediately after the device interface and memory maps are finalised. 

• This saves development time.

206Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Simulators (continued)
• Simulate I/O Peripherals 
• Simulator provides the option to simulate various I/O peripherals. 
• Using simulator's I/O support, the values for I/O registers can be edited and can 

be used as the input/output value in the firmware execution. 
• Hence it eliminates the need for connecting I/O devices for debugging the 

firmware. 

• Simulates Abnormal Conditions 
• With simulator's simulation support, you can input any desired value for any 

parameter during debugging the firmware and can observe the control flow of 
firmware. 

• It really helps the developer in simulating abnormal operational environment for 
firmware and helps the firmware developer to study the behaviour of the 
firmware under abnormal input conditions.

207Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Simulators (continued)
• Limitations of Simulator Based Debugging
• Deviation from Real Behaviour 
• Simulation-based firmware debugging is always carried out in a development 

environment where the developer may not be able to debug the firmware under 
all possible combinations of input. 

• Under certain operating conditions we may get some particular result and it need 
not be the same when the firmware runs in a production environment. 

• Lack of real-timeliness 
• The major limitation of simulator based debugging is that it is not real-time in 

behaviour. 
• The debugging is developer driven and it is no way capable of creating a real-

time behaviour. 
• Moreover in a real application the I/O condition may be varying or unpredictable. 
• Simulation goes for simulating those conditions for known values. 

208Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Emulators
• Emulator is hardware device which emulates the functionalities of the target device 

and allows real time debugging of the embedded firmware in a hardware 
environment. 

• A circuit for emulating target device remains independent of a particular target system 
and processor. 

• The emulator emulates the target system with extended memory and with code 
downloading ability during the edit-test-debug cycles. 

• Emulators maintain the original look, feel, and behaviour of the embedded system. 

• Even though the cost of developing an emulator is high, it proves to be the more cost 
efficient solution over time. 

• Emulators allow software exclusive to one system to be used on another. 

• It is more difficult to design emulators and it also requires better hardware than the 
original system. 

209Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Simulator vs. Emulator
• Simulator is a software application that 

precisely duplicates (mimics) the target 
CPU and simulates the various features 
and instructions supported by the target 
CPU. 

• The simulator is a host-based program 
that imitates the functionality and 
instruction set of the target processor.

• In summary, the simulator 'simulates' 
the target board CPU.

• Emulator is a self-contained hardware 
device which emulates the target CPU.

• The emulator hardware contains 
necessary emulation logic and it is 
hooked to the debugging application 
running on the development PC on one 
end and connects to the target board 
through some interface on the other 
end. 

• In summary, the emulator 'emulates' the 
target board CPU. 

210Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Debuggers
• Debugger is a software tool that is used to detect the source of program or 

script errors, by performing step-by-step execution of application code and 
viewing the content of code variables. 

• Debugging, in embedded application, is the process of diagnosing the firmware 
execution, monitoring the target processor's registers and memory while the 
firmware is running and checking the signals from various buses of the 
embedded hardware. 

• Debugging process in embedded application is broadly classified into two, 
namely, hardware debugging and firmware debugging. 
• Hardware debugging deals with the monitoring of various bus signals and checking 

the status lines of the target hardware. 
• Firmware debugging deals with examining the firmware execution, execution flow, 

changes to various CPU registers and status registers on execution of the firmware 
to ensure that the firmware is running as per the design.

211Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Firmware Debugging
• Firmware debugging is performed to figure out the bug or the error 

in the firmware which creates the unexpected behaviour. 

• There are several techniques for firmware debugging:

• Incremental EEPROM Burning Technique

• Inline Breakpoint Based Firmware Debugging

• Monitor Program Based Firmware Debugging

• In Circuit Emulator (ICE) Based Firmware Debugging

• On Chip Firmware Debugging (OCD)

212Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Incremental EEPROM Burning Technique
• This is the most primitive type of firmware debugging technique.
• In this technique, the code is separated into different functional code units. 
• Instead of burning the entire code into the EEPROM chip at once, the code is 

burned in incremental order.
• This means the code corresponding to all functionalities are separately coded, 

cross-compiled and burned into the chip one by one. 

• In this technique, we are not doing any debugging, but we are observing the 
status of firmware execution as a debug method.

• Incremental firmware burning technique is widely adopted in small, simple 
system developments and in product development where time is not a big 
constraint (e.g. R&D projects). 
• It is also very useful in product development environments where no other debug tools are 

available. 

213Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Inline Breakpoint Based Firmware 
Debugging
• This is another primitive method of firmware debugging.

• Within the firmware where you want to ensure that firmware execution is 
reaching up to a specified point, an inline debug code is inserted immediately 
after the point. 

• The debug code is a printf() function which prints a string given as per the 
firmware.

• The debug codes (printf() commands) can be inserted at each point where you 
want to ensure the firmware execution is covering that point. 

• The source code is cross-compiled along with the debug codes embedded 
within it. 

• The corresponding hex file is burned into the EEPROM. 

• The printf() generated data can be viewed on the HyperTerminal.

214Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Monitor Program Based Firmware 
Debugging
• This is the first adopted invasive method for firmware debugging.
• In this approach, a monitor program which acts as a supervisor is 

developed.
• The monitor program controls the downloading of user code into the 

code memory, inspects and modifies register/memory locations, allows 
single stepping of source code, etc. 

• The monitor program implements the debug functions as per a pre-
defined command set from the debug application interface. 

• The first step in any monitor program development is determining a set 
of commands for performing various operations like firmware 
downloading, memory/register inspection/modification, single stepping, 
etc. 

215Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Monitor Program Based Firmware 
Debugging (continued)
• Once the commands for each operation is fixed, the code is written for performing the 

actions corresponding to these commands.

• The commands may be received through any of the external interface of the target 
processor (e.g. RS-232C serial interface/parallel interface/USB, etc.). 

• The monitor program should query this interface to get commands or should handle the 
command reception if the data reception is implemented through interrupts. 

• On receiving a command, it is examined and the action corresponding to it is 
performed. 

• The entire code stuff handling the command reception and corresponding action 
implementation is known as the “Monitor Program". 

• After the successful completion of the ‘Monitor Program' development, it is compiled 
and burned into the FLASH memory or ROM of the target board. 

• The code memory containing the monitor program is known as the 'Monitor ROM'. 

216Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Monitor Program Based Firmware 
Debugging (continued)

217Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig.: Monitor Program Based Target Firmware Debug Setup



In Circuit Emulator (ICE) Based Firmware 
Debugging
• Emulator is a special hardware device used for emulating the functionality of a 

processor/controller and performing various debug operations like halt 
firmware execution, set breakpoints, get or set internal RAM/CPU register, etc. 

• Nowadays pure software applications which perform the functioning of a 
hardware emulator is also called as 'Emulators' (though they are 'Simulators' in 
operation). 

• The emulator application for emulating the operation of a PDA phone for 
application development is an example of a 'Software Emulator’. 

• A hardware emulator is controlled by a debugger application running on the 
development PC. 

• Most of the IDEs incorporate debugger support for some of the emulators 
commonly available in the market. 

218Shrishail Bhat, Dept. of ECE, AITM Bhatkal



In Circuit Emulator (ICE) Based Firmware 
Debugging (continued)
• Figure illustrates the different subsystems and interfaces of an 'Emulator' 

device. 

219Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fig.: In Circuit Emulator (ICE) Based Target Debugging



On Chip Firmware Debugging (OCD)
• Modern processors/controllers incorporate built in debug modules called On Chip 

Debug (OCD) support. 
• Though OCD adds silicon complexity and cost factor, from a developer perspective it is 

a very good feature supporting fast and efficient firmware debugging. 
• The On Chip Debug facilities integrated to the processor/controller are chip vendor 

dependent and most of them are proprietary technologies like Background Debug 
Mode (BDM), OnCE, etc. 

• Some vendors add 'on chip software debug support' through JTAG (Joint Test Action 
Group) port. 

• Usually the on-chip debugger provides the means to set simple breakpoints, query the 
internal state of the chip and single step through code. 

• Background Debug Mode (BDM) and JTAG (Joint Test Action Group) are two 
commonly used interfaces for OCD.

• OCD module implements dedicated registers for controlling debugging. 

220Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Target Hardware Debugging
• Hardware debugging involves the monitoring of various signals of 

the target board (address/data lines, port pins, etc.), checking the 
interconnection among various components, circuit continuity 
checking, etc.

• The various hardware debugging tools used in embedded product 
development are:
• Magnifying Glass (Lens)

• Multimeter

• Digital CRO

• Logic Analyser

• Function Generator

221Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Magnifying Glass (Lens)
• Magnifying glass is the primary hardware debugging tool used for embedded 

hardware debugging.
• A magnifying glass is a powerful visual inspection tool. 
• With a magnifying glass (lens), the surface of the target board can be examined 

thoroughly for dry soldering of components, missing components, improper 
placement of components, improper soldering, track (PCB connection) damage, short 
of tracks, etc. 

• Nowadays high quality magnifying stations are available for visual inspection. 
• The magnifying station incorporates magnifying glasses attached to a stand with CFL 

tubes for providing proper illumination for inspection. 
• The station usually incorporates multiple magnifying lenses. 
• The main lens acts as a visual inspection tool for the entire hardware board whereas 

the other small lens within the station is used for magnifying a relatively small area of 
the board which requires thorough inspection. 

222Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Multimeter
• A multimeter is used for measuring various electrical quantities like voltage 

(Both AC and DC), current (DC and AC), resistance, capacitance, continuity 
checking, transistor checking, cathode and anode identification of diode, etc. 

• Any multimeter will work over a specific range for each measurement. 
• A multimeter is the most valuable tool in the toolkit of an embedded hardware 

developer. 
• It is the primary debugging tool for physical contact based hardware 

debugging.
• In embedded hardware debugging, it is mainly used for checking the circuit 

continuity between different points on the board, measuring the supply 
voltage, checking the signal value, polarity, etc. 

• Both analog and digital versions of a multimeter are available. 
• The digital version is preferred over analog the one for various reasons like 

readability, accuracy, etc. 

223Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Digital CRO 
• Cathode Ray Oscilloscope (CRO) is used for waveform capturing and analysis, measurement of 

signal strength, etc. 

• CRO is a very good tool in analysing interference noise in the power supply line and other 
signal lines. 

• Monitoring the crystal oscillator signal from the target board is a typical example of the usage 
of CRO for waveform capturing and analysis in target board debugging.

• CROs are available in both analog and digital versions. 
• Though Digital CROs are costly, featurewise they are best suited for target board debugging 

applications. 

• Digital CROS are available for high frequency support and they also incorporate modern 
techniques for recording waveform over a period of time, capturing waves on the basis of a 
configurable event (trigger) from the target board.

• Most of the modern digital CROs contain more than one channel and it is easy to capture and 
analyse various signals from the target board using multiple channels simultaneously. 

• Various measurements like phase, amplitude, etc. is also possible with CROs.

224Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Logic Analyser
• Logic analyser is used for capturing digital data (logic 1 and 0) from a digital circuitry 

whereas CRO is employed in capturing all kinds of waves including logic signals. 

• A logic analyser contains special connectors and clips which can be attached to the 
target board for capturing digital data. 

• In target board debugging applications, a logic analyser captures the states of various 
port pins, address bus and data bus of the target processor/controller, etc. 

• Logic analysers give an exact reflection of what happens when particular line of 
firmware is running. 

• This is achieved by capturing the address line logic and data line logic of target 
hardware. 

• Most modern logic analysers contain provisions for storing captured data, selecting a 
desired region of the captured waveform, zooming selected region of the captured 
waveform, etc. 

225Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Function Generator
• Function generator is not a debugging tool. 

• It is an input signal simulator tool. 

• A function generator is capable of producing various periodic waveforms 
like sine wave, square wave, saw-tooth wave, etc. with different 
frequencies and amplitude. 

• Sometimes the target board may require some kind of periodic 
waveform with a particular frequency as input to some part of the 
board. 

• Thus, in a debugging environment, the function generator serves the 
purpose of generating and supplying required signals. 

226Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Boundary Scan
• Boundary scan is a technique used for testing the interconnection among 

the various chips, which support JTAG interface, present in the board.

• Boundary scan is also widely used as a debugging method to watch 
integrated circuit pin states, measure voltage, or analyse sub-blocks 
inside an integrated circuit. 

• The boundary scan test architecture provides a means to test 
interconnects between integrated circuits on a board without using 
physical test probes. 

• It adds a boundary scan cell that includes a multiplexer and latches, to 
each pin on the device. 

227Shrishail Bhat, Dept. of ECE, AITM Bhatkal



Boundary Scan (continued)
• Boundary Scan Description Language (BSDL) is used for implementing 

boundary scan tests using JTAG. 
• BSDL is a subset of VHDL and it describes the JTAG implementation in a 

device.

• The benefits provided by boundary scan are:
• Lower test generation costs 

• Reduced test time 

• Reduced time to market 

• Simpler and less costly testers 

• Compatibility with tester interfaces 

• High-density packaging devices accommodation 

228Shrishail Bhat, Dept. of ECE, AITM Bhatkal



References
1. Shibu K V, “Introduction to Embedded Systems”, Tata McGraw Hill, 2009.

2. Raj Kamal, “Embedded Systems: Architecture and Programming”, Tata 
McGraw Hill, 2008.

229Shrishail Bhat, Dept. of ECE, AITM Bhatkal


