
Embedded System
Design Concepts

EMBEDDED SYSTEMS (18EC62)

MODULE – 4

1Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics and
Quality Attributes of
Embedded Systems

2Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics of Embedded Systems
• Embedded systems possess certain specific characteristics.
• These characteristics are unique to each embedded system.

• Some of the important characteristics of an embedded system
are:
1. Application and domain specific
2. Reactive and Real Time
3. Operates in harsh environments
4. Distributed
5. Small size and weight
6. Power concerns

3Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics of Embedded Systems
(continued)

1. Application and Domain Specific
• Each embedded system has certain functions to perform and they

are developed in such a manner to do the intended functions
only.

• They cannot be used for any other purpose.
• For example, the embedded control unit of a microwave oven cannot be

replaced with an air conditioner's embedded control unit, because the
embedded control units of microwave oven and air conditioner are
specifically designed to perform certain specific tasks.

• Also an embedded control unit developed for a particular domain, say
telecom, cannot be replaced with another control unit designed to serve
another domain like consumer electronics.

4Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics of Embedded Systems
(continued)

2. Reactive and Real Time
• Embedded systems are in constant interaction with the real world

through sensors and user-defined input devices which are
connected to the input port of the system.

• Any changes happening in the real world (which is called an
Event) are captured by the sensors or input devices in Real Time
and the control algorithm running inside the unit reacts in a
designed manner to bring the controlled output variables to the
desired level.

• Embedded systems produce changes in output in response to the
changes in the input.
• So they are generally referred as Reactive Systems.

5Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics of Embedded Systems
(continued)
• Real Time System operation means the timing behaviour of

the system should be deterministic.
• The system should respond to requests or tasks in a known amount

of time.

• A Real Time system should not miss any deadlines for tasks
or operations.

• It is not necessary that all embedded systems should be Real
Time in operations.

• Embedded applications or systems which are mission critical,
like flight control systems, Antilock Brake Systems (ABS), etc.
are examples of Real Time systems.

6Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics of Embedded Systems
(continued)

3. Operates in Harsh Environment
• The environment in which the embedded system deployed may be a

dusty one or a high temperature zone or an area subject to vibrations
and shock.

• Systems placed in such areas should be capable to withstand all these
adverse operating conditions.

• The design should take care of the operating conditions of the area
where the system is going to implement.
• For example, if the system needs to be deployed in a high temperature zone, then

all the components used in the system should be of high temperature grade.
• Also proper shock absorption techniques should be provided to systems which are

going to be commissioned in places subject to high shock.
• Power supply fluctuations, corrosion and component aging, etc. are

the other factors that need to be taken into consideration for
embedded systems to work in harsh environments.

7Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics of Embedded Systems
(continued)

4. Distributed

• The term distributed means that embedded systems may be a part of larger systems.

• Many numbers of such distributed embedded systems form a single large embedded
control unit.
• For example, an automatic vending machine.

• It contains a card reader (for pre-paid vending systems), a vending unit, etc.

• Each of them are independent embedded units but they work together to perform the overall vending
function.

• Another example is the Automated Teller Machine (ATM).

• It contains a card reader embedded unit, responsible for reading and validating the user's ATM card,
transaction unit for performing transactions, a currency counter for dispatching/vending currency to the
authorised person and a printer unit for printing the transaction details.

• We can visualise these as independent embedded systems, but they work together to achieve a
common goal.

• Another typical example of a distributed embedded system is the Supervisory Control And Data
Acquisition (SCADA) system used in Control & Instrumentation applications, which contains physically
distributed individual embedded control units connected to a supervisory module.

8Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics of Embedded Systems
(continued)

5. Small Weight and Size

• Product aesthetics is an important factor in choosing a product.

• For example, when you plan to buy a new mobile phone, you may make a
comparative study on the pros and cons of the products available in the
market.
• Definitely the product aesthetics (size, weight, shape, style, etc.) will be one of the

deciding factors to choose a product.

• People believe in the phrase "Small is beautiful".

• Moreover it is convenient to handle a compact device than a bulky product.

• In embedded domain also compactness is a significant deciding factor.
• Most of the application demands small sized and low weight products.

9Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Characteristics of Embedded Systems
(continued)

6. Power Concerns
• Power management is another important factor that needs to be considered

in designing embedded systems.
• Embedded systems should be designed in such a way as to minimise the

heat dissipation by the system.
• The production of high amount of heat demands cooling requirements like

cooling fans which in turn occupies additional space and make the system
bulky.

• Select the design according to the low power components like low dropout
regulators, and controllers/processors with power saving modes.

• Also power management is a critical constraint in battery operated
application.
• The more the power consumption the less is the battery life.

10Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Quality Attributes of Embedded Systems
• Quality attributes are the non-functional requirements that

need to be documented properly in any system design.

• If the quality attributes are more concrete and measurable
it will give a positive impact on the system development
process and the end product.

• The quality attributes in any embedded system
development are broadly classified into two:
• Operational Quality Attributes
• Non-Operational Quality Attributes

11Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operational Quality Attributes
• The operational quality attributes represent the relevant

quality attributes related to the embedded system when it is in
the operational mode or 'online' mode.

• The important operational quality attributes are:
1. Response
2. Throughput
3. Reliability
4. Maintainability
5. Security
6. Safety

12Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operational Quality Attributes
(continued)

1. Response
• Response is a measure of quickness of the system.
• It gives you an idea about how fast the system is tracking the changes in

input variables.
• Most of the embedded systems demand fast response which should be

almost Real Time.
• For example, an embedded system deployed in flight control application should respond

in a Real Time manner.
• Any response delay in the system will create potential damages to the safety of the flight

as well as the passengers.

• It is not necessary that all embedded systems should be Real Time in
response.
• For example, the response time requirement for an electronic toy is not at all time-critical.
• There is no specific deadline that this system should respond within this particular

timeline.

13Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operational Quality Attributes
(continued)

2. Throughput
• Throughput deals with the efficiency of a system.
• Throughput can be defined as the rate of production or operation of a

defined process over a stated period of time.
• The rates can be expressed in terms of units of products, batches

produced, or any other meaningful measurements.
• In the case of a Card Reader, throughput means how many transactions the

Reader can perform in a minute or in an hour or in a day.

• Throughput is generally measured in terms of 'Benchmark’.
• A 'Benchmark' is a reference point by which something can be measured.
• Benchmark can be a set of performance criteria that a product is expected to

meet or a standard product that can be used for comparing other products of the
same product line.

14Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operational Quality Attributes
(continued)
3. Reliability
• Reliability is a measure of how much percentage you can rely

upon the proper functioning of the system or what is the
percentage susceptibility of the system to failures.

• System reliability is defined using two terms:
• Mean Time Between Failures (MTBF)
• Gives the frequency of failures in hours/weeks/months.

• Mean Time To Repair (MTTR)
• Specifies how long the system is allowed to be out of order following a

failure.

• For an embedded system with critical application need, it should be of
the order of minutes.

15Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operational Quality Attributes
(continued)

4. Maintainability
• Maintainability deals with support and maintenance to the end user

or client in case of technical issues and product failures or on the basis
of a routine system check-up.

• Reliability and maintainability are considered as two complementary
disciplines.

• A more reliable system means a system with less corrective
maintainability requirements and vice versa.

• Maintainability can be broadly classified into two categories:
• Scheduled or Periodic Maintenance (preventive maintenance)
• For example, replacing the cartridge of a printer after each 'n' number of

printouts to get quality prints.
• Maintenance to unexpected failures (corrective maintenance)
• For example, repairing the printer if the paper feeding part fails.

16Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operational Quality Attributes
(continued)
• Maintainability is also an indication of the availability of the

product for use.

• In any embedded system design, the ideal value for availability is
expressed as

𝐴𝑖 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 +𝑀𝑇𝑇𝑅
where

𝐴𝑖 = Availability in the ideal condition

𝑀𝑇𝐵𝐹 = Mean Time Between Failures

𝑀𝑇𝑇𝑅 = Mean Time To Repair

17Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operational Quality Attributes
(continued)

Numerical Example 1
• The Mean Time Between Failure (MTBF) of an embedded product is 4

months and the Mean Time To Repair (MTTR) of the product is 2 weeks.
What is the availability of the product?

• Solution:

Given 𝑀𝑇𝐵𝐹 = 4 months = 120 days

and 𝑀𝑇𝑇𝑅 = 2 weeks = 14 days

We know that 𝐴𝑖 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅

𝐴𝑖 =
120

120+14
=
120

134

𝐴𝑖 = 0.8955 or 89.55%

18Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operational Quality Attributes
(continued)

Numerical Example 2
• The availability of an embedded product is 90%. The Mean Time Between Failure

(MTBF) of the product is 30 days. What is the Mean Time To Repair (MTTR) in
days/hours for the product?

• Solution:
Given 𝐴𝑖 = 90% = 0.9
and MTBF = 30 days

We know that 𝐴𝑖 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅

𝑀𝑇𝐵𝐹 +𝑀𝑇𝑇𝑅 =
𝑀𝑇𝐵𝐹

𝐴𝑖

𝑀𝑇𝑇𝑅 =
𝑀𝑇𝐵𝐹

𝐴𝑖
−𝑀𝑇𝐵𝐹

𝑀𝑇𝑇𝑅 =
30

0.9
− 30

𝑀𝑇𝑇𝑅 = 3.33 𝑑𝑎𝑦𝑠 𝑜𝑟 80 ℎ𝑜𝑢𝑟𝑠

19Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operational Quality Attributes
(continued)

5. Security
• Confidentiality, Integrity, and Availability are the three major measures of information security.
• Confidentiality deals with the protection of data and application from unauthorised disclosure.
• Integrity deals with the protection of data and application from unauthorised modification.
• Availability deals with protection of data and application from unauthorized users.

• A very good example of the 'Security' aspect in an embedded product is a Personal Digital
Assistant (PDA).
• The PDA can be either a shared resource (e.g. PDAs used in LAB setups) or an individual one.

• If it is a shared one there should be some mechanism in the form of a user name and password
to access into a particular person's profile—This is an example of 'Availability’.

• Also all data and applications present in the PDA need not be accessible to all users.
• Some of them are specifically accessible to administrators only.
• For achieving this, Administrator and user levels of security should be implemented —An

example of Confidentiality.
• Some data present in the PDA may be visible to all users but there may not be necessary

permissions to alter the data by the users.
• That is Read Only access is allocated to all users—An example of Integrity.

20Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Operational Quality Attributes
(continued)

6. Safety
• Safety deals with the possible damages that can happen to the

operators, public and the environment due to the breakdown of an
embedded system or due to the emission of radioactive or hazardous
materials from the embedded products.

• The breakdown of an embedded system may occur due to a hardware
failure or a firmware failure.

• Safety analysis is a must in product engineering to evaluate the
anticipated damages and determine the best course of action to bring
down the consequences of the damages to an acceptable level.

• Some of the safety threats are sudden (like product breakdown) and
some of them are gradual (like hazardous emissions from the product).

21Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Non-Operational Quality Attributes
• The quality attributes that needs to be addressed for the

product 'not’ on the basis of operational aspects are
grouped under this category.

• The important non-operational quality attributes are:
1. Testability & Debug-ability
2. Evolvability
3. Portability
4. Time-to-prototype and market
5. Per unit and total cost

22Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Non-Operational Quality Attributes
(continued)

1. Testability & Debug-ability
• Testability deals with how easily one can test his/her design, application and

by which means he/she can test it.
• For an embedded product, testability is applicable to both the embedded

hardware and firmware.
• Embedded hardware testing ensures that the peripherals and the total hardware

functions in the desired manner, whereas firmware testing ensures that the
firmware is functioning in the expected way.

• Debug-ability is a means of debugging the product as such for figuring out
the probable sources that create unexpected behaviour in the total system.
• Debug-ability has two aspects in the embedded system development context,

namely, hardware level debugging and firmware level debugging.
• Hardware debugging is used for figuring out the issues created by hardware

problems whereas firmware debugging is employed to figure out the probable
errors that appear as a result of flaws in the firmware.

23Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Non-Operational Quality Attributes
(continued)
2. Evolvability
• Evolvability is referred as the non-heritable variation (in

Biology)

• For an embedded system, the quality attribute 'Evolvability’
refers to the ease with which the embedded product
(including firmware and hardware) can be modified to take
advantage of new firmware or hardware technologies.

24Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Non-Operational Quality Attributes
(continued)

3. Portability
• Portability is a measure of 'system independence’.
• An embedded product is said to be portable if the product is

capable of functioning 'as such' in various environments, target
processors/controllers and embedded operating systems.

• A standard embedded product should always be flexible and
portable.

• In embedded products, the term 'porting' represents the
migration of the embedded firmware written for one target
processor (e.g. Intel x86) to a different target processor (say
Hitachi SH3 processor).

25Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Non-Operational Quality Attributes
(continued)
• If the firmware is written in a high level language like ‘C’, it is very

easy to port the firmware
• It has only few target processor-specific functions which can be replaced

with the ones for the new target processor and re-compiling the program
for the new target processor-specific settings.

• The program then needs to be re-compiled to generate the new target
processor-specific machine codes.

• If the firmware is written in Assembly Language for a particular
family of processor (say x86 family), the portability is poor.
• It is very difficult to translate the assembly language instructions to the

new target processor specific language.

26Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Non-Operational Quality Attributes
(continued)
4. Time-to-Prototype and Market
• Time-to-market is the time elapsed between the

conceptualisation of a product and the time at which the
product is ready for selling (for commercial product) or use
(for non-commercial products).

• The commercial embedded product market is highly
competitive and time-to-market the product is a critical
factor in the success of a commercial embedded product.
• Competitor might release their product before you do.

• The technology used might have superseded with a new technology.

27Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Non-Operational Quality Attributes
(continued)
• Product prototyping helps a lot in reducing time-to-market.

• Prototyping is an informal kind of rapid product development
in which the important features of the product under
consideration are developed.

• The time-to-prototype is also another critical factor.
• If the prototype is developed faster, the actual estimated

development time can be brought down significantly.

• In order to shorten the time to prototype, make use of all possible
options like the use of off-the-shelf components, re-usable assets,
etc.

28Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Non-Operational Quality Attributes
(continued)

5. Per Unit Cost and Revenue
• Cost is a factor which is closely monitored by both end user and

product manufacturer.
• Cost is a highly sensitive factor for commercial products.
• Any failure to position the cost of a commercial product at a

nominal rate, may lead to the failure of the product in the
market.

• Proper market study and cost benefit analysis should be carried
out before taking a decision on the per-unit cost of the
embedded product.

• The budget and total system cost should be properly balanced to
provide a marginal profit.

29Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Non-Operational Quality Attributes
(continued)
• The product life cycle of every embedded product has different phases:
1. Design and Development Phase:
• The product idea generation, prototyping, Roadmap definition, actual product design and development are the

activities carried out during this phase.
• There is only investment and no returns.

2. Product Introduction Phase:
• Once the product is ready to sell, it is introduced to the market.
• During the initial period the sales and revenue will be low.
• There won't be much competition and the product sales and revenue increases with time.

3. Growth Phase
• The product grabs high market share.

4. Maturity Phase:
• The growth and sales will be steady and the revenue reaches at its peak.

5. Product Retirement/Decline Phase:
• Drop in sales volume, market share and revenue.
• The decline happens due to various reasons like competition from similar product with enhanced features or

technology changes, etc.
• At some point of the decline stage, the manufacturer announces discontinuing of the product.

30Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Non-Operational Quality Attributes
(continued)
• The different stages of the embedded products life cycle—revenue, unit cost

and profit in each stage are represented in the following Product Life-cycle
graph.

31Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Product Life Cycle (PLC) curve

Non-Operational Quality Attributes
(continued)
• From the graph, it is clear that the total revenue increases from the product

introduction stage to the product maturity stage.

• The revenue peaks at the maturity stage and starts falling in the decline/retirement
Stage.

• The unit cost is very high during the introductory stage.
• A typical example is cell phone; if you buy a new model of cell phone during its launch time,

the price will be high and you will get the same model with a very reduced price after three or
four months of its launching).

• The profit increases with increase in sales and attains a steady value and then falls
with a dip in sales.

• You can see a negative value for profit during the initial period.
• It is because during the product development phase there is only investment and no returns.

• Profit occurs only when the total returns exceed the investment and operating cost.

32Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Embedded Systems –
Application and Domain
Specific

33Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Washing Machine – Application-Specific
Embedded System
• Washing machine is a typical example of an

embedded system providing extensive
support in home automation applications.

• An embedded system contains sensors,
actuators, control unit and application-
specific user interfaces like keyboards,
display units, etc.
• All these components can be seen in a

washing machine.

34Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Washing Machine – Application-Specific
Embedded System (continued)

35Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Washing Machine – Functional Block Diagram

Washing Machine – Application-Specific
Embedded System (continued)
• The actuator part of the washing machine consists of a motorised agitator,

tumble tub, water drawing pump and inlet valve to control the flow of water
into the unit.

• The sensor part consists of the water temperature sensor, level sensor, etc.

• The control part contains a microprocessor/controller based board with
interfaces to the sensors and actuators.

• The sensor data is fed back to the control unit and the control unit generates
the necessary actuator outputs.

• The control unit also provides connectivity to user interfaces like keypad for
setting the washing time, selecting the type of material to be washed like light,
medium, heavy duty, etc.

• User feedback is reflected through the display unit and LEDs connected to the
control board.

36Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Washing Machine – Application-Specific
Embedded System (continued)

37Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Top Loading
Washing Machine

Front Loading
Washing Machine

Washing Machine – Application-Specific
Embedded System (continued)
• Washing machine comes in two models, namely, top loading and

front loading machines.

• In top loading models the agitator of the machine twists back and
forth and pulls the cloth down to the bottom of the tub.
• On reaching the bottom of the tub the clothes work their way back up

to the top of the tub where the agitator grabs them again and repeats
the mechanism.

• In the front loading machines, the clothes are tumbled and plunged
into the water over and over again.

• This is the first phase of washing.

38Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Washing Machine – Application-Specific
Embedded System (continued)
• In the second phase of washing, water is pumped out from the tub

and the inner tub uses centrifugal force to wring out more water
from the clothes by spinning at several hundred Rotations Per
Minute (RPM).

• This is called a 'Spin Phase’.

• The inner tub of the machine contains a number of holes and
during the spin cycle the inner tub spins, and forces the water out
through these holes to the stationary outer tub from which it is
drained off through the outlet pipe.

39Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Washing Machine – Application-Specific
Embedded System (continued)
• The design of washing machines may vary from manufacturer to

manufacturer, but the general principle underlying in the working
of the washing machine remains the same.

• The basic controls consist of a timer, cycle selector mechanism,
water temperature selector, load size selector and start button.

• The mechanism includes the motor, transmission, clutch, pump,
agitator, inner tub, outer tub and water inlet valve.

• Water inlet valve connects to the water supply line using at home
and regulates the flow of water into the tub.

40Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Washing Machine – Application-Specific
Embedded System (continued)

41Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Integrated Control Panel of a Washing Machine

Washing Machine – Application-Specific
Embedded System (continued)
• The integrated control panel consists of a microprocessor/controller

based board with I/O interfaces and a control algorithm running in it.

• Input interface includes the keyboard which consists of wash type
selector namely Wash, Spin and Rinse, cloth type selector namely Light,
Medium, Heavy duty and washing time setting, etc.

• The output interface consists of LED/LCD displays, status indication LEDs,
etc. connected to the I/O bus of the controller.

• The other types of I/O interfaces which are invisible to the end user are
different kinds of sensor interfaces, namely, water temperature sensor,
water level sensor, etc. and actuator interface including motor control
for agitator and tub movement control, inlet water flow control, etc.

42Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Automotive – Domain-Specific
Embedded System
• The major application domains of embedded systems are

consumer, industrial, automotive, telecom, etc.
• Telecom and automotive industry holds a big market share.

• Figure below gives an overview of the various types of electronic
control units employed automotive applications.

43Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Automotive – Domain-Specific
Embedded System (continued)

44Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Embedded System in the Automotive Domain

Inner Workings of Automotive
Embedded Systems
• Automotive embedded systems are the one where electronics take

control over the mechanical systems.

• The presence of automotive embedded system in a vehicle varies
from simple mirror and wiper controls to complex air bag controller
and antilock brake systems (ABS).

• Automotive embedded systems are normally built around
microcontrollers or DSPs or a hybrid of the two and are generally
known as Electronic Control Units (ECUs).

• The number of embedded controllers in an ordinary vehicle varies
from 20 to 40 whereas a luxury vehicle like Mercedes S and BMW 7
may contain 75 to 100 numbers of embedded controllers.

45Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Inner Workings of Automotive
Embedded Systems (continued)
• Government regulations on fuel economy, environmental factors

and emission standards and increasing customer demands on
safety, comfort and infotainment forces the automotive
manufactures to opt for sophisticated embedded control units
within the vehicle.

• The first embedded system used in automotive application was the
microprocessor based fuel injection system introduced by
Volkswagen 1600 in 1968.

46Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Inner Workings of Automotive
Embedded Systems (continued)
• The electronic control units (ECUs) used in the automotive

embedded industry can be broadly classified into two:
• High-speed Electronic Control Units (HECUs):
• These are deployed in critical control units requiring fast response.
• They include fuel injection systems, antilock brake systems, engine control,

electronic throttle, steering controls, transmission control unit and central control
unit.

• Low-speed Electronic Control Units (LECUs):
• These are deployed in applications where response time is not so critical.
• They generally are built around low cost microprocessors/microcontrollers and

digital signal processors.
• Audio controllers, passenger and driver door locks, door glass controls (power

windows), wiper control, mirror control, seat control systems, head lamp and tail
lamp controls, sun roof control unit etc. are examples of LECUs.

47Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Automotive Communication Buses
• Automotive applications make use of serial buses for

communication, which greatly reduces the amount of wiring
required inside a vehicle.

• Different types of serial interface buses are:
• Controller Area Network (CAN) Bus

• Local Interconnect Network (LIN) Bus

• Media-Oriented System Transport (MOST) Bus

48Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Automotive Communication Buses
(continued)
• Controller Area Network (CAN) Bus
• CAN Bus was originally proposed by Robert Bosch, pioneer in the

Automotive embedded solution providers.

• It supports medium speed (ISO11519-class B with data rates up to 125
Kbps) and high speed (IS011898 class C with data rates up to 1 Mbps)
data transfer.

• CAN is an event-driven protocol interface with support for error
handling in data transmission.

• It is generally employed in safety system like airbag control; power
train systems like engine control and Antilock Brake System (ABS); and
navigation systems like GPS.

49Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Automotive Communication Buses
(continued)
• Local Interconnect Network (LIN) Bus
• LIN bus is a single master multiple slave (up to 16 independent slave

nodes) communication interface.
• LIN is a low speed, single wire communication interface with support

for data rates up to 20 Kbps and is used for sensor/actuator
interfacing.

• LIN bus follows the master communication triggering technique to
eliminate the possible bus arbitration problem that can occur by the
simultaneous talking of different slave nodes connected to a single
interface bus.

• LIN bus is employed in applications like mirror controls, fan controls,
seat positioning controls, window controls, and position controls
where response time is not a critical issue.

50Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Automotive Communication Buses
(continued)
• Media-Oriented System Transport (MOST) Bus
• MOST Bus is targeted for high-bandwidth automotive multimedia

networking (e.g. audio/video, infotainment system interfacing), used
primarily in European cars.

• It is a multimedia fibre-optic point-to-point network implemented in a
star, ring or daisy-chained topology over optical fibre cables.

• The MOST bus specifications define the physical (electrical and optical
parameters) layer as well as the application layer, network layer, and
media access control.

• MOST bus is an optical fibre cable connected between the Electrical
Optical Converter (EOC) and Optical Electrical Converter (OEC), which
would translate into the optical cable MOST bus.

51Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Hardware Software Co-
Design and Program
Modelling

52Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Hardware Software Co-Design
• In the traditional embedded system development approach, the hardware

software partitioning is done at an early stage.
• Engineers from the software group take care of the software architecture

development and implementation, whereas engineers from the hardware group are
responsible for building the hardware required for the product.

• There is less interaction between the two teams and the development happens
either serially or in parallel.

• Once the hardware and software are ready, the integration is performed.

• The increasing competition in the commercial market and need for reduced
'time-to-market' the product calls for a novel approach for embedded system
design in which the hardware and software are co-developed instead of
independently developing both.

53Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Hardware Software Co-Design
(continued)
• During the co-design process, the product requirements captured from the

customer are converted into system level needs or processing requirements.
• At this point of time it is not segregated as either hardware requirement or

software requirement, instead it is specified as functional requirement.

• The system level processing requirements are then transferred into functions
which can be simulated and verified against performance and functionality.

• The Architecture design follows the system design.
• The partition of system level processing requirements into hardware and software

takes place during the architecture design phase.

• Each system level processing requirement is mapped as either hardware and/or
software requirement.

• The partitioning is performed based on the hardware-software trade-offs.

54Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Hardware Software Co-Design
(continued)
• The architectural design results in the detailed behavioural

description of the hardware requirement and the definition of the
software required for the hardware.

• The processing requirement behaviour is usually captured using
computational models.

• The models representing the software processing requirements are
translated into firmware implementation using programming
languages.

55Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fundamental Issues in Hardware
Software Co-Design
• The fundamental issues in hardware software co-design are:

• Selecting the Model

• Selecting the Architecture

• Selecting the Language

• Partitioning System Requirements into Hardware and Software

56Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fundamental Issues in Hardware
Software Co-Design (continued)
• Selecting the Model

• In hardware software co-design, models are used for capturing and describing the
system characteristics.

• A model is a formal system consisting of objects and composition rules.

• It is hard to make a decision on which model should be followed in a particular
system design.

• Most often designers switch between a variety of models from the requirements
specification to the implementation aspect of the system design.

• The reason being, the objective varies with each phase.

• For example, at the specification stage, only the functionality of the system is in focus and not the
implementation information.

• When the design moves to the implementation aspect, the information about the system components
is revealed and the designer has to switch to a model capable of capturing the system's structure.

57Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fundamental Issues in Hardware
Software Co-Design (continued)
• Selecting the Architecture

• A model only captures the system characteristics and does not provide information
on 'how the system can be manufactured?’.

• The architecture specifies how a system is going to implement in terms of the
number and types of different components and the interconnection among them.

• The commonly used architectures in system design are Controller Architecture,
Datapath Architecture, Complex Instruction Set Computing (CISC), Reduced
Instruction Set Computing (RISC), Very Long Instruction Word Computing (VLIW),
Single Instruction Multiple Data (SIMD), Multiple Instruction Multiple Data (MIMD),
etc.

• Some of them fall into Application Specific Architecture Class (like controller architecture),
while others fall into either general purpose architecture class (CISC, RISC, etc.) or Parallel
processing class (like VLIW, SIMD, MIMD, etc.).

58Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fundamental Issues in Hardware
Software Co-Design (continued)
• The controller architecture implements the finite state machine model using a state

register and two combinational circuits.

• The state register holds the present state and the combinational circuits implement the logic
for next state and output.

• The datapath architecture is best suited for implementing the data flow graph
model where the output is generated as a result of a set of predefined
computations on the input data.

• A datapath represents a channel between the input and output

• The datapath may contain registers, counters, register files, memories and ports along with
high speed arithmetic units.

• Ports connect the datapath to multiple buses.

• Most of the time the arithmetic units are connected in parallel with pipelining support for
bringing high performance.

59Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fundamental Issues in Hardware
Software Co-Design (continued)
• The Finite State Machine Datapath (FSMD) architecture combines the

controller architecture with datapath architecture.

• It implements a controller with datapath.

• The controller generates the control input whereas the datapath processes the data.

• The datapath contains two types of I/O ports, out of which one acts as the control port for

receiving/sending the control signals from/to the controller unit and the second I/O port

interfaces the datapath with external world for data input and data output.

• Normally the datapath is implemented in a chip and the I/O pins of the chip acts as the

data input output ports for the chip resident data path.

60Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fundamental Issues in Hardware
Software Co-Design (continued)
• The Complex Instruction Set Computing (CISC) architecture uses an

instruction set representing complex operations.
• It is possible for a CISC instruction set to perform a large complex operation with a

single instruction.

• e.g. Reading a register value and comparing it with a given value and then
transfer the program execution to a new address location is done using the CJNE
instruction for 8051 ISA).

• The use of a single complex instruction in place of multiple simple instructions
greatly reduces the program memory access and program memory size
requirement.

• However it requires additional silicon for implementing microcode decoder for
decoding the CISC instruction.

• The datapath for the CISC processor is complex.

61Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fundamental Issues in Hardware
Software Co-Design (continued)
• The Reduced Instruction Set Computing (RISC) architecture uses

instruction set representing simple operations.

• It requires the execution of multiple RISC instructions to perform a complex

operation.

• The datapath of RISC architecture contains a large register file for storing

the operands and output.

• RISC instruction set is designed to operate on registers.

• RISC architecture supports extensive pipelining.

62Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fundamental Issues in Hardware
Software Co-Design (continued)
• The Very Long Instruction Word (VLIW) architecture implements multiple functional units (ALUs,

multipliers, etc.) in the datapath.

• The VLIW instruction packages one standard instruction per functional unit of the datapath.

• Parallel processing architecture implements multiple concurrent Processing Elements (PEs) and

each processing element may associate a datapath containing register and local memory.

• Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) architectures are examples for

parallel processing architecture.

• In SIMD architecture, a single instruction is executed in parallel with the help of the Processing Elements.

• The scheduling of the instruction execution and controlling of each PE is performed through a single controller.

• The SIMD architecture forms the basis of re-configurable processor.

• In MIMD architecture, the Processing Elements execute different instructions at a given point of time.

• The MIMD architecture forms the basis of multiprocessor systems.

• The PEs in a multiprocessor system communicates through mechanisms like shared memory and message passing.

63Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fundamental Issues in Hardware
Software Co-Design (continued)
• Selecting the Language

• A programming language captures a 'Computational Model' and maps it into
architecture.

• There is no hard and fast rule to specify this language should be used for capturing
this model.

• A model can be captured using multiple programming languages like C, C++, C#,
Java, etc. for software implementations and languages like VHDL, System C, Verilog,
etc. for hardware implementations.

• On the other hand, a single language can be used for capturing a variety of models.

• Certain languages are good in capturing certain computational model.
• For example, C++ is a good candidate for capturing an object oriented model.

• The only pre-requisite in selecting a programming language for capturing a model is
that the language should capture the model easily.

64Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Fundamental Issues in Hardware
Software Co-Design (continued)
• Partitioning System Requirements into Hardware and Software

• From an implementation perspective, it may be possible to
implement the system requirements in either hardware or
software (firmware).

• It is a tough decision making task to figure out which one to opt.

• Various hardware software trade-offs are used for making a
decision on the hardware-software partitioning.

65Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Computational Models in Embedded
Design
• The commonly used computational models in embedded system

design are:

• Data Flow Graph Model

• Control Data Flow Graph Model

• State Machine Model

• Sequential Program Model

• Concurrent/Communicating Process Model

• Object-Oriented Model

66Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Data Flow Graph/Diagram (DFG) Model
• The Data Flow Graph (DFG) model translates the data processing

requirements into a data flow graph.

• It is a data driven model in which the program execution is
determined by data.

• This model emphasises on the data and operations on the data
which transforms the input data to output data.

• Embedded applications which are computational intensive and data
driven are modelled using the DFG model.

• DSP applications are typical examples for it.

67Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Data Flow Graph/Diagram (DFG) Model
(continued)
• Data Flow Graph (DFG) is a visual model in which the operation on the

data (process) is represented using a block (circle) and data flow is
represented using arrows.

• An inward arrow to the process (circle) represents input data and an
outward arrow from the process (circle) represents output data in DFG
notation.

• Suppose one of the functions in our application contains the
computational requirement 𝑥 = 𝑎 + 𝑏 and 𝑦 = 𝑥 − 𝑐.

• Figure illustrates the implementation of a DFG model for implementing
these requirements.

68Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Data Flow Graph/Diagram (DFG) Model
(continued)

69Shrishail Bhat, Dept. of ECE, AITM Bhatkal

+

-

ba

c
x

yData Flow Graph (DFG) Model

Data Flow Node

Data Flow Node

Data Flow Graph/Diagram (DFG) Model
(continued)
• In a DFG model, a data path is the data flow path from input to

output.

• A DFG model is said to be acyclic DFG (ADFG) if it doesn't contain
multiple values for the input variable and multiple output values for
a given set of input(s).

• Feedback inputs (Output is fed back to Input), events, etc. are
examples for non-acyclic inputs.

• A DFG model translates the program as a single sequential process
execution.

70Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Control Data Flow Graph/Diagram
(CDFG) Model
• The DFG model is a data driven model in which the execution is

controlled by data and it doesn't involve any control operations
(conditionals).

• The Control DFG (CDFG) model is used for modelling applications
involving conditional program execution.

• CDFG models contains both data operations and control operations.

• The CDFG uses Data Flow Graph (DFG) as element and conditional
(constructs) as decision makers.

• CDFG contains both data flow nodes and decision nodes, whereas DFG
contains only data flow nodes.

71Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Control Data Flow Graph/Diagram
(CDFG) Model (continued)
• Consider the implementation of the CDFG for the following requirement.

• 𝐼𝑓 𝑓𝑙𝑎𝑔 = 1, 𝑥 = 𝑎 + 𝑏; 𝑒𝑙𝑠𝑒 𝑦 = 𝑎 − 𝑏;

• This requirement contains a decision making process.

• The CDFG model for the same is given in the figure.

• The control node is represented by a 'Diamond' block which is the decision
making element in a normal flow chart based design.

• CDFG translates the requirement, which is modelled to a concurrent process
model.

• The decision on which process is to be executed is determined by the control
node.

72Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Control Data Flow Graph/Diagram
(CDFG) Model (continued)

73Shrishail Bhat, Dept. of ECE, AITM Bhatkal

+

-

ba

x

Control Data Flow Graph (CDFG) Model

Data Flow Node

Data Flow Node

flag=1? Control Node

y

T

F

Control Data Flow Graph/Diagram
(CDFG) Model (continued)
• A real world example for modelling the embedded application using

CDFG is capturing and saving of the image to a format set by the user in
a digital still camera.

• Here everything is data driven.
• Analog Front End converts the CCD sensor generated analog signal to digital signal

• The data from ADC is stored to a frame buffer for the use of a media processor
which performs various operations like, auto correction, white balance adjusting,
etc.

• The decision on, in which format the image is stored (formats like JPEG,
TIFF, BMP, etc.) is controlled by the camera settings, configured by the
user.

74Shrishail Bhat, Dept. of ECE, AITM Bhatkal

State Machine Model
• The State Machine Model is used for modelling reactive or event-driven

embedded systems whose processing behaviour are dependent on state
transitions.
• Embedded systems used in the control and industrial applications are typical

examples for event driven systems.

• The State Machine model describes the system behaviour with 'States',
'Events', 'Actions' and 'Transitions’.
• State is a representation of a current situation.

• An event is an input to the state.
• The event acts as stimuli for state transition.

• Transition is the movement from one state to another.

• Action is an activity to be performed by the state machine.

75Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Finite State Machine (FSM) Model
• A Finite State Machine (FSM) model is one in which the number of states are

finite.

• The system is described using a finite number of possible states.

• As an example, let us consider the design of an embedded system for
driver/passenger 'Seat Belt Warning' in an automotive using the FSM model.

• The system requirements are captured as.

1. When the vehicle ignition is turned on and the seat belt is not fastened within 10
seconds of ignition ON, the system generates an alarm signal for 5 seconds.

2. The Alarm is turned off when the alarm time (5 seconds) expires or if the
driver/passenger fastens the belt or if the ignition switch is turned off, whichever
happens first.

76Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Finite State Machine (FSM) Model
(continued)
• Here the states are
• 'Alarm Off’

• 'Waiting’

• 'Alarm On’

• The events are
• 'Ignition Key ON’

• 'Ignition Key OFF’

• 'Timer Expire’

• 'Alarm Time Expire’

• 'Seat Belt ON’

• Using the FSM, the system requirements can be modeled as given in figure.

77Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Finite State Machine (FSM) Model
(continued)

78Shrishail Bhat, Dept. of ECE, AITM Bhatkal

FSM Model for Automatic Seat Belt Warning System

Alarm
Off

Alarm
On

Waiting

Finite State Machine (FSM) Model
(continued)
• The 'Ignition Key ON' event triggers the 10 second timer and transitions the state to

'Waiting’.

• If a ‘Seat Belt ON’ or 'Ignition Key OFF' event occurs during the wait state, the state
transitions into 'Alarm Off’.

• When the wait timer expires in the waiting state, the event 'Timer Expire' is generated
and it transitions the state to 'Alarm On' from the 'Waiting' state.

• The 'Alarm On' state continues until a 'Seat Belt ON' or 'Ignition Key OFF' event or
'Alarm Time Expire' event, whichever occurs first.
• The occurrence of any of these events transitions the state to 'Alarm Off’.

• The wait state is implemented using a timer.
• The timer also has certain set of states and events for state transitions.

• Using the FSM model, the timer can be modelled as shown in the figure.

79Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Finite State Machine (FSM) Model
(continued)

80Shrishail Bhat, Dept. of ECE, AITM Bhatkal

FSM Model for Timer

IDLE

RUNNING

READY

Finite State Machine (FSM) Model
(continued)
• As seen from the FSM, the timer state can be either 'IDLE' or 'READY' or 'RUNNING’.

• During the normal condition when the timer is not running, it is said to be in the 'IDLE'
state.

• The timer is said to be in the 'READY’ state when the timer is loaded with the count
corresponding to the required time delay.

• The timer remains in the 'READY' state until a 'Start Timer' event occurs.

• The timer changes its state to 'RUNNING' from the 'READY' state on receiving a 'Start
Timer' event and remains in the 'RUNNING' state until the timer count expires or a
'Stop Timer' event occurs.

• The timer state changes to 'IDLE' from 'RUNNING' on receiving a 'Stop Timer' or 'Timer
Expire' event.

81Shrishail Bhat, Dept. of ECE, AITM Bhatkal

FSM Model - Example 1
Design an automatic tea/coffee vending machine based on FSM model for the following
requirement.

• The tea/coffee vending is initiated by user inserting a 5 rupee coin.

• After inserting the coin, the user can either select 'Coffee' or 'Tea' or press 'Cancel' to cancel
the order and take back the coin.

Solution

• The FSM Model contains four states namely,

• 'Wait for coin’

• 'Wait for User Input’

• 'Dispense Tea'

• 'Dispense Coffee'

82Shrishail Bhat, Dept. of ECE, AITM Bhatkal

FSM Model - Example 1 (continued)

83Shrishail Bhat, Dept. of ECE, AITM Bhatkal

FSM Model for Automatic Tea/Coffee Vending Machine

STATE A

STATE D

STATE C

STATE B

FSM Model - Example 1 (continued)
• The event 'Insert Coin' (5 rupee coin insertion), transitions the state to 'Wait

for User Input’.

• The system stays in this state until a user input is received from the buttons
'Cancel', 'Tea' or 'Coffee' (Tea and Coffee are the drink select button).

• If the event triggered in 'Wait State' is 'Cancel' button press, the coin is pushed
out and the state transitions to 'Wait for Coin’.

• If the event received in the 'Wait State' is either 'Tea' button press, or 'Coffee'
button press, the state changes to 'Dispense Tea' and 'Dispense Coffee'
respectively.

• Once the coffee/tea vending is over, the respective states transition back to the
'Wait for Coin' state.

84Shrishail Bhat, Dept. of ECE, AITM Bhatkal

FSM Model - Example 2
Design a coin operated public telephone unit based on FSM model for the following
requirements.

1. The calling process is initiated by lifting the receiver (off-hook) of the telephone unit.

2. After lifting the phone the user needs to insert a 1 rupee coin to make the call.

3. If the line is busy, the coin is returned on placing the receiver back on the hook (on-hook).

4. If the line is through, the user is allowed to talk till 60 seconds and at the end of 45th
second, prompt for inserting another 1 rupee coin for continuing the call is initiated.

5. If the user doesn't insert another 1 rupee coin, the call is terminated on completing the 60
seconds time slot.

6. The system is ready to accept new call request when the receiver is placed back on the
hook (on-hook).

7. The system goes to the 'Out of Order' state when there is a line fault.

85Shrishail Bhat, Dept. of ECE, AITM Bhatkal

86Shrishail Bhat, Dept. of ECE, AITM Bhatkal

FSM Model for
Coin Operated Telephone
System

STATE A

STATE F

STATE G

STATE H

STATE B

STATE I

STATE C

STATE D

STATE E

Sequential Program Model
• In the Sequential Program Model, the functions or processing

requirements are executed in sequence.
• It is same as the conventional procedural programming.

• Here the program instructions are iterated and executed
conditionally and the data gets transformed through a series of
operations.

• Finite State Machines (FSMs) and Flow Charts are used for
modelling sequential program.
• The FSM approach represents the states, events, transitions and actions,

whereas the Flow Chart models the execution flow.

87Shrishail Bhat, Dept. of ECE, AITM Bhatkal

#define ON 1

#define OFF 0

#define YES 1

#define NO 0

void seat_belt_warn()

{

wait_10sec();

if (check_ignition_key()==ON)

{

if (check_seat_belt()==OFF)

{

set_timer(5);

start_alarm();

while ((check_seat_belt()==OFF)&&(check_ignition_key()==ON)&&(timer_expire()==NO));

stop_alarm();

}

}

}

}

Sequential Program Model (continued)
• The execution of functions in a sequential program model for the 'Seat Belt Warning'

system is illustrated below:

88Shrishail Bhat, Dept. of ECE, AITM Bhatkal

89Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Sequential Program Model for
Seat Belt Warning System

Figure illustrates the flow chart
approach for modelling the 'Seat Belt
Warning' system explained in the FSM
modelling section.

Concurrent/Communicating Process
Model
• The concurrent or communicating process model models concurrently

executing tasks/processes.
• It is easier to implement certain requirements in concurrent processing model

than the conventional sequential execution.
• Sequential execution leads to a single sequential execution of task and thereby

leads to poor processor utilisation, when the task involves I/O waiting, sleeping for
specified duration etc.

• If the task is split into multiple subtasks, it is possible to tackle the CPU usage
effectively by switching the task execution, when the subtask under execution goes
to a wait or sleep mode.

• However, concurrent processing model requires additional overheads in task
scheduling, task synchronisation and communication.

90Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Concurrent/Communicating Process
Model (continued)
• As an example, consider the implementation of the 'Seat Belt

Warning' system using concurrent processing model.

• We can split the tasks into:

1. Timer task for waiting 10 seconds (wait timer task)

2. Task for checking the ignition key status (ignition key status monitoring task)

3. Task for checking the seat belt status (seat belt status monitoring task)

4. Task for starting and stopping the alarm (alarm control task)

5. Alarm timer task for waiting 5 seconds (alarm timer task)

91Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Concurrent/Communicating Process
Model (continued)
• The tasks cannot be executed randomly or sequentially.
• We need to synchronise their execution through some mechanism.
• For example, the alarm control task is executed only when the wait timer is

expired and if the ignition key is in the ON state and seat belt is in the OFF
state.

• We will use events to indicate these scenarios.
• The wait_timer_expire event is associated with the timer task event and

it will be in the reset state initially and it is set when the timer expires.
• Similarly, events ignition_on and ignition_off are associated with the task

ignition key status monitoring and the events seat_belt_on and
seat_belt_off are associated with the task seat belt status monitoring.

92Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Concurrent/Communicating Process
Model (continued)

93Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Create and initialize events

wait_timer_expire, ignition_on, ignition_off,

seat_belt_on, seat_belt_off,

alarm_timer_start, alarm_timer_expire

Create task Wait Timer

Create task Ignition Key Status Monitor

Create task Seat Belt Status Monitor

Create task Alarm Control

Create task Alarm Timer

Tasks for Seat Belt Warning System

94Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Wait Timer Task

Sleep(10s);

//Signal wait_timer_expire

Set Event wait_timer_expire;

Concurrent Processing Program
Model for Seat Belt Warning
System

Ignition Key Status Monitor

Task

while(1) {

if (Ignition key ON) {

Set Event ignition_on;

Reset Event ignition_off;

}

else {

Set Event ignition_off;

Reset Event ignition_on;

}

}

Alarm Control Task

Wait for the signalling of

wait_timer_expire

if (ignition_on && seat_belt_off) {

Start Alarm();

Set Event alarm_start;

Wait for the signalling of

alarm_timer_expire or

ignition_off or seat_belt_on;

Stop Alarm();

}

Alarm Timer Task

Wait for the Event alarm_start;

Sleep(5s);

//Signal alarm_timer_expire

Set Event alarm_timer_expire;

Seat Belt Status Monitor Task

while(1) {

if (Seat Belt ON) {

Set Event seat_belt_on;

Reset Event seat_belt_off;

}

else {

Set Event seat_belt_off;

Reset Event seat_belt_on;

}

}

Object-Oriented Model
• The object-oriented model is an object based model for modelling

system requirements.

• It disseminates a complex software requirement into simple well
defined pieces called objects.

• Object-oriented model brings re-usability, maintainability and
productivity in system design.

• In the object-oriented modelling, object is an entity used for
representing or modelling a particular piece of the system.
• Each object is characterised by a set of unique behaviour and state.

95Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Object-Oriented Model (continued)
• A class is an abstract description of a set of objects and it can be considered as

a 'blueprint' of an object.
• A class represents the state of an object through member variables and object

behaviour through member functions.
• The member variables and member functions of a class can be private, public

or protected.
• Private member variables and functions are accessible only within the class,

whereas public variables and functions are accessible within the class as well as
outside the class.

• The protected variables and functions are protected from external access.

• However classes derived from a parent class can also access the protected member
functions and variables.

• The concept of object and class brings abstraction, hiding and protection.

96Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Embedded Firmware
Design and
Development

97Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Introduction to Embedded Firmware
Design
• The embedded firmware is responsible for controlling the various

peripherals of the embedded hardware and generating response in
accordance with the functional requirements.

• Firmware is considered as the master brain of the embedded system.
• Imparting intelligence to an Embedded system is a one time process and

it can happen at any stage.
• It can be immediately after the fabrication of the embedded hardware or at a later

stage.

• For most of the embedded products, the embedded firmware is stored
at a permanent memory (ROM) and they are non-alterable by end users.
• Some of the embedded products used in the Control and Instrumentation domain

are adaptive.

98Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Introduction to Embedded Firmware
Design (continued)
• Designing embedded firmware requires understanding of the particular

embedded product hardware, like various component interfacing,
memory map details, I/O port details, configuration and register details
of various hardware chips used and some programming language.

• Embedded firmware development process starts with the conversion of
the firmware requirements into a program model using modelling tools.

• Once the program model is created, the next step is the implementation
of the tasks and actions by capturing the model using a language which
is understandable by the target processor/controller.

99Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Embedded Firmware Design Approaches
• The firmware design approaches for embedded product is purely

dependent on the complexity of the functions to be performed, the
speed of operation required, etc.

• Two basic approaches are used for embedded firmware design:

• Super Loop Based Approach (Conventional Procedural Based Design)

• Embedded Operating System (OS) Based Approach

100Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Super Loop Based Approach
• The Super Loop based firmware development approach is adopted for

applications that are not time critical and where the response time is not

so important.

• It is very similar to a conventional procedural programming where the

code is executed task by task.

• The task listed at the top of the program code is executed first and the

tasks just below the top are executed after completing the first task.

• In a multiple task based system, each task is executed in serial in this

approach.

101Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Super Loop Based Approach (continued)
• The firmware execution flow for this will be

1. Configure the common parameters and perform initialisation for various
hardware components memory, registers, etc.

2. Start the first task and execute it

3. Execute the second task

4. Execute the next task

5. :

6. :

7. Execute the last defined task

8. Jump back to the first task and follow the same flow

102Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Super Loop Based Approach (continued)
• The order in which the tasks to be executed are fixed and they are hard coded in the code

itself.
• Also the operation is an infinite loop based approach.

• We can visualise the operational sequence listed above in terms of a 'C' program code as

103Shrishail Bhat, Dept. of ECE, AITM Bhatkal

void main()

{

Configurations();

Initializations();

while(1)

{

Task 1();

Task 2();

:

:

Task n();

}

}

Super Loop Based Approach (continued)
• Almost all tasks in embedded applications are non-ending and are

repeated infinitely throughout the operation.
• This repetition is achieved by using an infinite loop.
• Hence the name 'Super loop based approach’.

• The only way to come out of the loop is either a hardware reset or
an interrupt assertion.
• A hardware reset brings the program execution back to the main loop.
• An interrupt request suspends the task execution temporarily and performs

the corresponding interrupt routine and on completion of the interrupt
routine it restarts the task execution from the point where it got interrupted.

104Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Super Loop Based Approach (continued)
• Advantage of Super Loop Based Approach:

• It doesn't require an operating system

• There is no need for scheduling which task is to be executed and assigning priority
to each task.

• The priorities are fixed and the order in which the tasks to be executed are also
fixed.

• Hence the code for performing these tasks will be residing in the code memory
without an operating system image.

105Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Super Loop Based Approach (continued)
• Applications of Super Loop Based Approach:

• This type of design is deployed in low-cost embedded products and
products where response time is not time critical.

• Some embedded products demands this type of approach if some
tasks itself are sequential.

• For example, reading/writing data to and from a card using a card
reader requires a sequence of operations like checking the presence of
card, authenticating the operation, reading/writing, etc.

• It should strictly follow a specified sequence and the combination of these series
of tasks constitutes a single task-namely data read/write.

106Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Super Loop Based Approach (continued)
• A typical example of a 'Super loop based’ product is an electronic

video game toy containing keypad and display unit.

• The program running inside the product may be designed in such a
way that it reads the keys to detect whether the user has given any
input and if any key press is detected the graphic display is updated.

• The keyboard scanning and display updating happens at a reasonably
high rate.

• Even if the application misses a key press, it won't create any critical
issues; rather it will be treated as a bug in the firmware.

• It is not economical to embed an OS into low cost products and it is an
utter waste to do so if the response requirements are not crucial.

107Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Super Loop Based Approach (continued)
• Drawbacks of Super Loop Based Approach:
• Any failure in any part of a single task will affect the total system.
• If the program hangs up at some point while executing a task, it will remain there forever

and ultimately the product stops functioning.

• Watch Dog Timers (WDTs) can be used to overcome this, but this, in turn, may cause
additional hardware cost and firmware overheads.

• Lack of real timeliness.
• If the number of tasks to be executed within an application increases, the time at which

each task is repeated also increases.

• This brings the probability of missing out some events.

• For example, in a system with keypads, in order to identify the key press, you may have to
press the keys for a sufficiently long time till the keypad status monitoring task is executed
internally by the firmware.

• Interrupts can be used for external events requiring real time attention.

108Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Embedded Operating System (OS) Based
Approach
• The Embedded Operating System (OS) based approach contains

operating systems, which can be either a General Purpose
Operating System (GPOS) or a Real Time Operating System (RTOS)
to host the user written application firmware.

109Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Embedded Operating System (OS) Based
Approach (continued)
• The General Purpose OS (GPOS) based design is very similar to a conventional PC

based application development where the device contains an operating system
(Windows/Unix/Linux, etc. for Desktop PCs) and you will be creating and running user
applications on top of it.
• Example of a GPOS used in embedded product development is Microsoft Windows XP

Embedded.

• Examples of Embedded products using Microsoft Windows XP OS are Personal Digital Assistants
(PDAs), Hand held devices/Portable devices and Point of Sale (POS) terminals.

• Use of GPOS in embedded products merges the demarcation of Embedded Systems
and general computing systems in terms of OS.

• For developing applications on top of the OS, the OS supported APIs are used.

• Similar to the different hardware specific drivers, OS based applications also require
'Driver software' for different hardware present on the board to communicate with
them.

110Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Embedded Operating System (OS) Based
Approach (continued)
• Real Time Operating System (RTOS) based design approach is employed in embedded

products demanding Real-time response.

• RTOS responds in a timely and predictable manner to events.

• Real Time operating system contains a Real Time kernel responsible for performing
pre-emptive multitasking, scheduler for scheduling tasks, multiple threads, etc.

• A Real Time Operating System (RTOS) allows flexible scheduling of system resources like the
CPU and memory and offers some way to communicate between tasks.

• 'Windows CE', 'pSOS', 'VxWorks', 'ThreadX', 'MicroC/OS-II’, 'Embedded Linux',
'Symbian’, etc. are examples of RTOS employed in embedded product development.

• Mobile phones, PDAs (Based on Windows CE/Windows Mobile Platforms), handheld
devices, etc. are examples of 'Embedded Products' based on RTOS.

• Most of the mobile phones are built around the popular RTOS 'Symbian’. (sic)

111Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Embedded Firmware Development
Languages
• For embedded firmware development, we can use either

• a target processor/controller specific language (Generally known as
Assembly language or low level language) or

• a target processor/controller independent language (Like C, C++, JAVA, etc.
commonly known as High Level Language) or

• a combination of Assembly and High level Language.

112Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Language Based Development
• 'Assembly language' is the human readable notation of 'machine language’

• ‘Machine Ianguage' is a processor understandable language.

• Machine language is a binary representation and it consists of 1s and 0s.

• Machine language is made readable by using specific symbols called 'mnemonics’.

• Hence machine language can be considered as an interface between processor and
programmer.

• Assembly language and machine languages are processor/controller dependent and
an assembly program written for one processor/controller family will not work with
others.

• Assembly language programming is the task of writing processor specific machine
code in mnemonic form, converting the mnemonics into actual processor
instructions (machine language) and associated data using an assembler.

113Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Language Based Development
• 'Assembly language' is the human readable notation of 'machine language’

• ‘Machine Ianguage' is a processor understandable language.

• Machine language is a binary representation and it consists of 1s and 0s.

• Machine language is made readable by using specific symbols called 'mnemonics’.

• Hence machine language can be considered as an interface between processor and
programmer.

• Assembly language and machine languages are processor/controller dependent and
an assembly program written for one processor/controller family will not work with
others.

• Assembly language programming is the task of writing processor specific machine
code in mnemonic form, converting the mnemonics into actual processor
instructions (machine language) and associated data using an assembler.

114Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Language Based Development
(continued)
• Assembly Language program was the most common type of

programming adopted in the beginning of software revolution.

• Even today also almost all low level, system related, programming is
carried out using assembly language.

• In particular, assembly language is often used in writing the low
level interaction between the operating system and the hardware,
for instance in device drivers.

115Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Language Based Development
(continued)
• The general format of an assembly language instruction is an Opcode

followed by Operands.

• The Opcode tells the processor/controller what to do and the Operands
provide the data and information required to perform the action
specified by the opcode.

• For example
MOV A, #30

Here MOV A is the Opcode and #30 is the operand

• The same instruction when written in machine language will look like
01110100 00011110

where the first 8-bit binary value 01110100 represents the opcode MOV A and the
second 8-bit binary value 00011110 represents the operand 30.

116Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Language Based Development
(continued)
• Each line of an assembly language program is split into four fields as

given below

LABEL OPCODE OPERAND COMMENTS

• A 'LABEL' is an optional identifier used extensively in programs to
reduce the reliance on programmers for remembering where data
or code is located.

• For example

DELAY: MOV R0,#255 ;Load Register R0 with 255

117Shrishail Bhat, Dept. of ECE, AITM Bhatkal

LABEL OPCODE OPERAND COMMENT

Assembly Language Based Development
(continued)
• The Assembly language program written in assembly code is saved as .asm (Assembly

file) file or an .src (source) file (also .s file).

• Any text editor like ‘Notepad' or 'WordPad' from Microsoft or the text editor provided
by an Integrated Development (IDE) tool can be used for writing the assembly
instructions.

• Similar to 'C' and other high level language programming, we can have multiple source
files called modules in assembly language programming.
• Each module is represented by an '.asm' or '.src' file.

• This approach is known as 'Modular Programming’.

• Modular programming is employed when the program is too complex or too big.
• In 'Modular Programming', the entire code is divided into submodules and each module is made

re-usable.

• Modular Programs are usually easy to code, debug and alter.

118Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Language Based Development
(continued)

119Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly language to machine
language conversion process

Source File 1
(.asm or .src file)

(Module-1)

Source File 2
(.asm or .src file)

(Module-2)

Object to Hex
File Converter

Module
Assembler

Module
Assembler

Absolute
Object File

Object File 1

Object File 2

Linker/
Locator

Library Files

Machine Code
(Hex File)

Assembly Language Based Development
(continued)
• Source File to Object File Translation
• Translation of assembly code to machine code is performed by

assembler.
• The assemblers for different target machines are different.
• A51 Macro Assembler from Keil software is a popular assembler for the 8051 family

microcontroller.

• The various steps involved in the conversion of a program written in
assembly language to corresponding binary file/machine language are
illustrated in the figure.

120Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Language Based Development
(continued)
• Each source module is written in Assembly and is stored as .src file or .asm

file.
• Each file can be assembled separately to examine the syntax errors and

incorrect assembly instructions.
• On successful assembling of each .src/.asm file a corresponding object file is

created with extension '.obj’.
• The object file does not contain the absolute address of where the generated code needs

to be placed on the program memory and hence it is called a re-locatable segment.
• It can be placed at any code memory location and it is the responsibility. of the

linker/locater to assign absolute address for this module.

• Each module can share variables and subroutines (functions) among them.
• Keyword ‘PUBLIC’ and ‘EXTRN’ are used while accessing shared variables and subroutines.

121Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Language Based Development
(continued)
• Library File Creation and Usage

• Libraries are specially formatted, ordered program collections of object

modules that may be used by the linker at a later time.

• Library files are generated with extension '. lib’.

• When the linker processes a library, only those object modules in the library

that are necessary to create the program are used.

• Library file is some kind of source code hiding technique.

• For example, 'LIB51' from Keil Software is an example for a library creator

and it is used for creating library files for A51 Assembler/C51 Compiler for

8051 specific controller.

122Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Language Based Development
(continued)
• Linker and Locator

• Linker and Locater is another software utility responsible for "linking the various object
modules in a multi-module project and assigning absolute address to each module".

• Linker generates an absolute object module by extracting the object modules from the
library, if any, and those obj files created by the assembler, which is generated by
assembling the individual modules of a project.

• It is the responsibility of the linker to link any external dependent variables or functions
declared on various modules and resolve the external dependencies among the modules.

• An absolute object file or module does not contain any re-locatable code or data.
• All code and data reside at fixed memory locations.

• The absolute object file is used for creating hex files for dumping into the code memory of
the processor/controller.

• 'BL51' from Keil Software is an example for a Linker & Locater for A51 Assembler/C51
Compiler for 8051 specific controller.

123Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Assembly Language Based Development
(continued)
• Object to Hex File Converter

• This is the final stage in the conversion of Assembly language (mnemonics) to machine

understandable language (machine code).

• Hex File is the representation of the machine code and the hex file is dumped into the code

memory of the processor/controller.

• The hex file representation varies depending on the target processor/controller make.

• HEX files are ASCII files that contain a hexadecimal representation of target application.

• Hex file is created from the final 'Absolute Object File' using the Object to Hex File

Converter utility.

• 'OH51' from Keil software is an example for Object to Hex File Converter utility for A51

Assembler/C51 Compiler for 8051 specific controller.

124Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Advantages of Assembly Language Based
Development
• Efficient Code Memory and Data Memory Usage (Memory Optimisation)
• Since the developer is well versed with the target processor architecture and

memory organisation, optimised code can be written for performing
operations.

• This leads to less utilisation of code memory and efficient utilisation of data
memory.

• High Performance
• Optimised code not only improves the code memory usage but also

improves the total system performance.
• Through effective assembly coding, optimum performance can be achieved

for a target application.

125Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Advantages of Assembly Language Based
Development (continued)
• Low Level Hardware Access

• Most of the code for low level programming like accessing external device specific registers
from the operating system kernel, device drivers, and low level interrupt routines, etc. are
making use of direct assembly coding since low level device specific operation support is
not commonly available with most of the high-level language cross compilers.

• Code Reverse Engineering
• Reverse engineering is the process of understanding the technology behind a product by

extracting the information from a finished product.
• Reverse engineering is performed by 'hawkers' to reveal the technology behind 'Proprietary

Products’.

• Though most of the products employ code memory protection, if it may be possible to
break the memory protection and read the code memory, it can easily be converted into
assembly code using a dis-assembler program for the target machine.

126Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Drawbacks of Assembly Language Based
Development
• High Development Time
• Assembly language is much harder to program than high level

languages.
• The developer must pay attention to more details and must have

thorough knowledge of the architecture, memory organisation and
register details of the target processor in use.

• Learning the inner details of the processor and its assembly
instructions is highly time consuming and it creates a delay impact in
product development.

• Also more lines of assembly code are required for performing an
action which can be done with a single instruction in a high-level
language like 'C'.

127Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Drawbacks of Assembly Language Based
Development (continued)
• Developer Dependency

• Unlike high level languages, there is no common written rule for developing assembly
language based applications.

• In assembly language programming, the developers will have the freedom to choose the
different memory location and registers.

• Also the programming approach varies from developer to developer depending on his/her
taste.
• For example moving data from a memory location to accumulator can be achieved

through different approaches.
• If the approach done by a developer is not documented properly at the development stage,

he/she may not be able to recollect why this approach is followed at a later stage or when a
new developer is instructed to analyse this code, he/she also may not be able to understand
what is done and why it is done.
• Hence upgrading an assembly program or modifying it on a later stage is very difficult.

128Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Drawbacks of Assembly Language Based
Development (continued)
• Non-Portable
• Target applications written in assembly instructions are valid only for that

particular family of processors (e.g. Application written for Intel x86 family of
processors) and cannot be re-used for another target processors/controllers
(Say ARM11 family of processors).

• If the target processor/controller changes, a complete re-writing of the
application using the assembly instructions for the new target
processor/controller is required.

129Shrishail Bhat, Dept. of ECE, AITM Bhatkal

High Level Language Based Development
• Any high level language (like C, C++ or Java) with a supported cross-

compiler for the target processor can be used for embedded
firmware development.

• The most commonly used high level language for embedded
firmware application development is 'C’.
• ‘C’ is well defined, easy to use high level language with extensive cross

platform development tool support.

• Nowadays cross-compilers for C++ is also emerging out and
embedded developers are making use of C++ for embedded
application development.

130Shrishail Bhat, Dept. of ECE, AITM Bhatkal

High Level Language Based Development
(continued)
• The various steps involved in high level language based embedded

firmware development is same as that of assembly language based

development except that the conversion of source file written in

high level language to object file is done by a cross-compiler.
• In Assembly language based development it is carried out by an

assembler.

• The various steps involved in the conversion of a program written in

high level language to corresponding binary file/machine language

is illustrated in the figure.

131Shrishail Bhat, Dept. of ECE, AITM Bhatkal

High Level Language Based Development
(continued)

132Shrishail Bhat, Dept. of ECE, AITM Bhatkal

High level language to machine
language conversion process

Source File 1
(.c or .c++ file)

(Module-1)

Source File 2
(.c or .c++ file)

(Module-2)

Object to Hex
File Converter

Module
Cross-Compiler

Module
Cross-Compiler

Absolute
Object File

Object File 1

Object File 2

Linker/
Locator

Library Files

Machine Code
(Hex File)

High Level Language Based Development
(continued)
• The program written in any of the high level languages is saved with the

corresponding language extension (.c for C, .cpp for C++ etc).

• Any text editor like ‘Notepad' or 'WordPad' from Microsoft or the text editor

provided by an Integrated Development (IDE) tool can be used for writing the

program.

• Most of the high level languages support modular programming approach and

hence we can have multiple source files called modules written in

corresponding high level language.

• The source files corresponding to each module is represented by a file with

corresponding language extension.

133Shrishail Bhat, Dept. of ECE, AITM Bhatkal

High Level Language Based Development
(continued)
• Translation of high level source code to executable object code is done by a

cross-compiler.

• Each high level language should have a cross-compiler for converting the high

level source code into the target processor machine code.
• C51 Cross-compiler from Keil software is an example for Cross-compiler used for 'C'

language for the 8051 family of microcontroller.

• Conversion of each module's source code to corresponding object file is

performed by the cross-compiler.

• Rest of the steps involved in the conversion of high level language to target

processor's machine code are same as that of the steps involved in assembly

language based development.

134Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Advantages of High Level Language
Based Development
• Reduced Development Time

• Developer requires less or little knowledge on the internal hardware details

and architecture of the target processor/controller.

• Bare minimal knowledge of the memory organisation and register details of

the target processor in use and syntax of the high level language are the only

pre-requisites for high level language based firmware development.

• With high level language, each task can be accomplished by lesser number

of lines of code compared to the target processor/controller specific

assembly language based development.

135Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Advantages of High Level Language
Based Development (continued)
• Developer Independency

• The syntax used by most of the high level languages are universal and a

program written in the high level language can easily be understood by a

second person knowing the syntax of the language.

• High level languages always instruct certain set of rules for writing the code

and commenting the piece of code.

• If the developer strictly adheres to the rules, the firmware will be 100%

developer independent.

136Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Advantages of High Level Language
Based Development (continued)
• Portability
• Target applications written in high level languages are converted to target

processor/controller understandable format (machine codes) by a cross-compiler.

• An application written in high level language for a particular target processor can

easily be converted to another target processor/controller specific application, with

little or less effort by simply re-compiling/little code modification followed by re-

compiling the application for the required target processor/controller, provided, the

cross-compiler has support for the processor/controller selected.
• This makes applications written in high level language highly portable.

• Little effort may be required in the existing code to replace the target processor

specific files with new header files, register definitions with new ones, etc.
• This is the major flexibility offered by high level language based design.

137Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Limitations of High Level Language Based
Development
• Poor Optimization by Cross-Compilers
• Some cross-compilers available for high level languages may not be so

efficient in generating optimised target processor specific instructions.
• Target images created by such compilers may be messy and non-optimised

in terms of performance as well as code size.
• For example, the task achieved by cross-compiler generated machine instructions from a

high level language may be achieved through a lesser number of instructions if the same
task is hand coded using target processor specific machine codes.

• The time required to execute a task also increases with the number of
instructions.

• However modern cross-compilers are tending to adopt designs incorporating
optimisation techniques for both code size and performance.

138Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Limitations of High Level Language Based
Development (continued)
• Not Suitable for Low Level Hardware

• High level language based code snippets may not be efficient in accessing

low level hardware where hardware access timing is critical (of the order of

nano or micro seconds).

• High Investment Cost

• The investment required for high level language based development tools

(Integrated Development Environment incorporating cross-compiler) is high

compared to Assembly Language based firmware development tools.

139Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Mixing Assembly and High Level
Language
• Certain embedded firmware development situations may demand

the mixing of high level language with Assembly and vice versa.

• High level language and assembly languages are usually mixed in
three ways:

• Mixing Assembly Language with High Level Language

• Mixing High Level Language with Assembly Language

• Inline Assembly programming

140Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Mixing Assembly Language with High
Level Language
• Assembly routines are mixed with 'C' in situations where
• the entire program is written in 'C' and the cross compiler in use do not have a built

in support for implementing certain features like Interrupt Service Routine
functions (ISR) or

• if the programmer wants to take advantage of the speed and optimised code
offered by machine code generated by hand written assembly rather than cross
compiler generated machine code.

• When accessing certain low level hardware, the timing specifications may be very
critical and a cross compiler generated binary may not be able to offer the required
time specifications accurately.
• Writing the hardware/peripheral access routine in processor/controller specific

Assembly language and invoking it from 'C' is the most advised method to handle
such situations.

141Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Mixing Assembly Language with High
Level Language (continued)
• Mixing 'C' and Assembly is little complicated.

• The programmer must be aware of how parameters are passed from
the 'C' routine to Assembly and values are returned from assembly
routine to 'C' and how 'Assembly routine' is invoked from the 'C' code.

• Passing parameter to the assembly routine and returning values
from the assembly routine to the caller 'C' function and the method
of invoking the assembly routine from 'C' code is cross-compiler
dependent.

142Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Mixing Assembly Language with High
Level Language (continued)
• Consider an example Keil C51 cross compiler for 8051 controller.

• The steps for mixing assembly code with ‘C’ are:
• Write a simple function in C that passes parameters and returns values the way you

want your assembly routine to.

• Use the SRC directive (#PRAGMA SRC at the top of the file) so that the C compiler

generates an .SRC file instead of an .OBJ file.

• Compile the C file. Since the SRC directive is specified, the .SRC file is generated.

The .SRC file contains the assembly code generated for the C code you wrote.

• Rename the .SRC file to .A51 file.

• Edit the .A51 file and insert the assembly code you want to execute in the body of

the assembly function shell included in the . A51 file.

143Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Mixing Assembly Language with High
Level Language (continued)
• As an example consider the following sample code:

• This C function on cross compilation generates the assembly SRC file.

• The special compiler directive SRC generates the Assembly code corresponding to the

'C' function and each line of the source code is converted to the corresponding

Assembly instruction.

• By inspecting the code segment, the source code can be modified by adding the

required assembly routine.

144Shrishail Bhat, Dept. of ECE, AITM Bhatkal

#pragma SRC

unsigned char my_assembly_func (unsigned int argument)

{

return (argument + 1); // Insert dummy lines to access all args and

// retvals

}

Mixing High Level Language with
Assembly Language
• Mixing the code written in a high level language like 'C' and Assembly language

is useful in the following scenarios:
1. The source code is already available in Assembly language and a routine written in

a high level language like 'C' needs to be included to the existing code.

2. The entire source code is planned in Assembly code for various reasons like

optimised code, optimal performance, efficient code memory utilisation and

proven expertise in handling the Assembly, etc. But some portions of the code

may be very difficult and tedious to code in Assembly.
• For example, 16-bit multiplication and division in 8051 Assembly Language.

3. To include built in library functions written in 'C' language provided by the cross

compiler.
• For example, Built in Graphics library functions and String operations supported by 'C’.

145Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Mixing High Level Language with
Assembly Language (continued)
• Most often the functions written in 'C' use parameter passing to the

function and returns value/s to the calling functions.

• Parameters are passed to the function and values are returned
from the function using CPU registers, stack memory and fixed
memory.

• Its implementation is cross compiler dependent and it varies across
cross compilers.

146Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Mixing High Level Language with
Assembly Language (continued)
• Consider an example for the Keil C51 cross-compiler.

• C51 allows passing of a maximum of three arguments through general

purpose registers R2 to R7.

• If the three arguments are char variables, they are passed to the function

using registers R7, R6 and R5, respectively.

• If the parameters are int values, they are passed using register pairs

(R7, R6), (R5, R4) and (R3, R2).

• If the number of arguments is greater than three, the first three

arguments are passed through registers and rest is passed through fixed

memory locations.

147Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Mixing High Level Language with
Assembly Language (continued)
• Return values are usually passed through general purpose registers.
• R7 is used for returning char value and register pair (R7, R6) is used for

returning int value.
• The 'C' subroutine can be invoked from the assembly program using the

subroutine call Assembly instruction.
• For example

where Cfunction is a function written in 'C’
• The prefix _ informs the cross compiler that the parameters to the function are

passed through registers.
• If the function is invoked without the _ prefix, it is understood that the

parameters are passed through fixed memory locations.

148Shrishail Bhat, Dept. of ECE, AITM Bhatkal

LCALL _Cfunction

Inline Assembly Programming
• Inline assembly is a technique for inserting target processor/controller specific

Assembly instructions at any location of a source code written in high level
language 'C’.
• This avoids the delay in calling an assembly routine from a 'C' code.

• Special keywords are used to indicate that the start and end of Assembly
instructions.
• The keywords are cross-compiler specific.
• C51 uses the keywords #pragma asm and #pragma endasm to indicate a block of code

written in assembly.
• For example:

149Shrishail Bhat, Dept. of ECE, AITM Bhatkal

#pragma asm

MOV A, #13H

#pragma endasm

Programming in Embedded C
• Whenever the conventional 'C' Language and its extensions are used for programming

embedded systems, it is referred as 'Embedded C' programming.
• Programming in 'Embedded C' is quite different from conventional Desktop application

development using 'C' language for a particular OS platform.
• Desktop computers contain working memory in the range of Megabytes (Nowadays Giga

bytes) and storage memory in the range of Giga bytes.
• For a desktop application developer, the resources available are surplus in quantity and s/he can

be very lavish in the usage of RAM and ROM and no restrictions are imposed at all.
• This is not the case for embedded application developers.

• Almost all embedded systems are limited in both storage and working memory resources.
• Embedded application developers should be aware of this fact and should develop applications

in the best possible way which optimises the code memory and working memory usage as well
as performance.

• In other words, the hands of an embedded application developer are always tied up in the
memory usage context.

150Shrishail Bhat, Dept. of ECE, AITM Bhatkal

‘C’ vs. ‘Embedded C’
• 'C' is a well structured, well defined and standardised

general purpose programming language with extensive
bit manipulation support.

• 'C' offers a combination of the features of high level
language and assembly and helps in hardware access
programming (system level programming) as well as
business package developments (Application
developments like pay roll systems, banking
applications, etc).

• The conventional 'C' language follows ANSI standard and
it incorporates various library files for different
operating systems.

• A platform (operating system) specific application,
known as, compiler is used for the conversion of
programs written in 'C' to the target processor (on which
the OS is running) specific binary files.
• Hence it is a platform specific development.

• Embedded 'C' can be considered as a subset of
conventional 'C' language.

• Embedded 'C' supports all 'C' instructions and
incorporates a few target processor specific
functions/instructions.

• The standard ANSI 'C' library implementation is always
tailored to the target processor/controller library files in
Embedded 'C’.

• The implementation of target processor/controller
specific functions/instructions depends upon the
processor/controller as well as the supported cross-
compiler for the particular Embedded 'C' language.

• A software program called 'Cross-compiler' is used for
the conversion of programs written in Embedded 'C' to
target processor/controller specific instructions
(machine language).

151Shrishail Bhat, Dept. of ECE, AITM Bhatkal

Compiler vs. Cross-Compiler
• Compiler is a software tool that converts a source

code written in a high level language on top of a
particular operating system running on a specific
target processor architecture (e.g. Intel
x86/Pentium).

• Here the operating system, the compiler program
and the application making use of the source
code run on the same target processor.

• The source code is converted to the target
processor specific machine instructions.

• The development is platform specific (OS as well
as target processor on which the OS is running).

• Compilers are generally termed as 'Native
Compilers’.
• A native compiler generates machine code for the

same machine (processor) on which it is running.

• Cross-compilers are the software tools used in cross-
platform development applications.
• In cross-platform development, the compiler running on

a particular target processor/OS converts the source
code to machine code for a target processor whose
architecture and instruction set is different from the
processor on which the compiler is running or for an
operating system which is different from the current
development environment OS.

• Embedded system development is a typical example
for cross-platform development.
• Embedded firmware is developed on a machine with

Intel/AMD or any other target processors and the same
is converted into machine code for any other target
processor architecture (e.g. 8051, PIC, ARM etc).

• Keil C51 is an example for cross-compiler.
• In embedded firmware application, whenever we use

the term 'Compiler’ it normally refers to the cross-
compiler.

152Shrishail Bhat, Dept. of ECE, AITM Bhatkal

References
1. Shibu K V, “Introduction to Embedded Systems”, Tata McGraw Hill, 2009.

2. Raj Kamal, “Embedded Systems: Architecture and Programming”, Tata
McGraw Hill, 2008.

153Shrishail Bhat, Dept. of ECE, AITM Bhatkal

