
Computer Organization

and Architecture

Carl Hamacher, Zvonko Vranesic, Safwat Zaky,

Computer Organization, 5th Edition,

Tata McGraw Hill, 2002.

Machine Instructions

and Programs - Part 1

Module 1

Numbers, Arithmetic

Operations, and

Characters

Introduction

⚫ Computers are built using logic circuits that

operate on information represented by two-

valued electrical signals

⚫ Labelled as 0 and 1

⚫ We define the amount of information

represented by such a signal as a bit of

information, where bit stands for binary digit.

⚫ The most natural way to represent a number

in a computer system is by a string of bits,

called a binary number.

Number Representation

⚫ Consider an n-bit vector

𝐵 = 𝑏𝑛−1……𝑏1𝑏0
Where 𝑏𝑖 = 0 𝑜𝑟 1 for 0 ≤ 𝑖 ≤ 𝑛 − 1

⚫ This vector can represent unsigned integer

values 𝑉 in the range 0 to 2𝑛 − 1, where

𝑉 𝐵 = 𝑏𝑛−1 × 2𝑛−1 +⋯+ 𝑏1 × 21 + 𝑏0 × 20

⚫ We obviously need to represent both positive

and negative numbers.

Signed Integer

⚫ 3 major representations:
⚫ Sign-and-magnitude

⚫ 1’s complement

⚫ 2’s complement

⚫ Assumptions:
⚫ 4-bit machine word

⚫ 16 different values can be represented

⚫ Roughly half are positive, half are negative

Sign-and-Magnitude Representation

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-0

-1

-2

-3

-4

-5

-6

-7

0 100 = + 4

1 100 = - 4

+

-

High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits = +/-2n-1 -1
Two representations for 0

1’s Complement Representation

⚫ Subtraction implemented by addition & 1's complement

⚫ Still two representations of 0! This causes some problems

⚫ Some complexities in addition

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-7

-6

-5

-4

-3

-2

-1

-0

0 100 = + 4

1 011 = - 4

+

-

2’s Complement Representation

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0 100 = + 4

1 100 = - 4

+

-

⚫ Only one representation for 0

⚫ One more negative number than positive

number

like 1's comp
except shifted
one position
clockwise

Binary, Signed-Integer

Representations

0
0
0
0
0
0

0
0
1
1
1
1
1
1
1
1

0
0

0
0
0
0
0
0

1
1
1
1

1
1
1
1

1
1
0
0
1
1

0
0
0
0
1
1
0
0
1
1

1
0
1
0
1
0

1
0
0
1
0
1
0
1
0
1

1+

1-

2+
3+
4+
5+
6+

7+

2-
3-
4-
5-
6-
7-

8-
0+
0-

1+
2+
3+
4+
5+
6+

7+

0+
7-
6-
5-
4-
3-
2-
1-
0-

1+
2+
3+
4+
5+
6+

7+

0+

7-
6-
5-
4-
3-
2-
1-

b3 b2b1b0

Sign and
magnitude 1's complement 2's complement

B Values represented

Figure 2.1. Binary, signed-integer representations.

Page 28

Addition of Positive Numbers

Addition and Subtraction of

Signed Numbers

Addition and Subtraction – 2’s

Complement

⚫ To add two numbers, add their n-bit

representations, ignoring the carry-out signal

from the most significant bit (MSB) position.

The sum will be the algebraically correct

value in the 2’s complement representation

as long as the answer is in the range −2𝑛−1

through +2𝑛−1 − 1.

Addition and Subtraction – 2’s

Complement..

⚫ To subtract two numbers 𝑋 and 𝑌, that is, to

perform 𝑋 − 𝑌, form the 2’s complement of 𝑌
and then add it to 𝑋. Again, the result will be

the algebraically correct value in the 2’s

complement representation system if the

answer is in the range −2𝑛−1 through

+ 2𝑛−1 − 1.

Examples

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

If carry-in to the high
order bit =
carry-out then ignore
carry

if carry-in differs from
carry-out then overflow

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems

Examples

1 1 0 1
0 1 1 1

0 1 0 0

0 0 1 0
1 1 0 0

1 1 1 0

0 1 1 0
1 1 0 1

0 0 1 1

1 0 0 1
0 1 0 1

1 1 1 0

1 0 0 1
1 1 1 1

1 0 0 0

0 0 1 0
0 0 1 1

0 1 0 1

4+()

2-()

3+()

2-()

8-()

5+()

+

+

+

+

+

+

1 1 1 0

0 1 0 0
1 0 1 0

0 1 1 1
1 1 0 1

0 1 0 0

6-()

2-()

4+()

3-()

4+()

7+()
+

+
(b)

(d)1 0 1 1
1 1 1 0

1 0 0 1

1 1 0 1
1 0 0 1

0 0 1 0
0 1 0 0

0 1 1 0
0 0 1 1

1 0 0 1
1 0 1 1

1 0 0 1
0 0 0 1

0 0 1 0
1 1 0 1

0 1 0 1

0 0 1 0
0 0 1 1

5-()

2+()
3+()

5+()

2+()
4+()

2-()

7-()

3-()
7-()

6+()
3+()

1+()

7-()
5-()

7-()

2+()
3-()

+

+

-

-

-

-

-

-

(a)

(c)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 2.4. 2's-complement Add and Subtract operations.

Page 31

Overflow - Add two positive numbers to get a

negative number or two negative numbers to

get a positive number

5 + 3 = -8 -7 - 2 = +7

0000

0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110

1111

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0000

0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110

1111

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

Overflow Conditions

5

3

-8

0 1 1 1
0 1 0 1

0 0 1 1

1 0 0 0

-7

-2

7

1 0 0 0
1 0 0 1

1 1 0 0

1 0 1 1 1

5

2

7

0 0 0 0
0 1 0 1

0 0 1 0

0 1 1 1

-3

-5

-8

1 1 1 1
1 1 0 1

1 0 1 1

1 1 0 0 0

Overflow Overflow

No overflow No overflow

Overflow when carry-in to the high-order bit does not equal carry out

Characters

⚫ In addition to numbers, computers must be

able to handle nonnumeric text information

consisting of characters.

⚫ Characters can be letters of the alphabet,

decimal digits, punctuation marks, and so on.

⚫ They are represented by codes that are

usually eight bits long.

⚫ American Standards Committee on Information

Interchange (ASCII) code is widely used.

ASCII Table

Memory Locations,

and Addresses

Memory Locations and

Addresses

⚫ Memory consists

of many millions of

storage cells,

each of which can

store 1 bit.

⚫ Data is usually

accessed in n-bit

groups called

words.

⚫ n is called word

length.

second word

first word

Figure 2.5. Memory words.

nbits

last word

i th word

•
•
•

•
•
•

Memory Locations and

Addresses..

⚫ 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers
for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=

b31 1=

• • •

Memory Locations and

Addresses..

⚫ To retrieve information from memory, either for one

word or one byte (8-bit), addresses for each location

are needed.

⚫ A k-bit address memory has 2k memory locations,

namely 0 – 2k-1, called memory space.

⚫ 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

⚫ 32-bit memory: 232 = 4G (1G=230)

⚫ 1K(kilo)=210

⚫ 1T(tera)=240

Byte Addressability

⚫ A byte is always 8 bits, but the word length typically

ranges from 16 to 64 bits.

⚫ It is impractical to assign distinct addresses to

individual bit locations in the memory.

⚫ The most practical assignment is to have successive

addresses refer to successive byte locations in the

memory – byte-addressable memory.

⚫ Byte locations have addresses 0, 1, 2, … If word

length is 32 bits, they successive words are located

at addresses 0, 4, 8,…

Big-Endian and Little-Endian

Assignments

2
k

4- 2
k

3- 2
k

2- 2
k

1- 2
k

4-2
k

4-

0 1 2 3

4 5 6 7

00

4

2
k

1- 2
k

2- 2
k

3- 2
k

4-

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Big-endian assignment (b) Little-endian assignment

4

Word

address

•
•
•

•
•
•

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant

bytes of the word

Word Alignment

⚫ Address ordering of bytes

⚫ Word alignment

⚫ Words are said to be aligned in memory if they
begin at a byte address. that is a multiple of the
num of bytes in a word.

⚫ 16-bit word: word addresses: 0, 2, 4,….

⚫ 32-bit word: word addresses: 0, 4, 8,….

⚫ 64-bit word: word addresses: 0, 8,16,….

Accessing numbers, characters,
and character strings

⚫ A number usually occupies one word.
⚫ It can be accessed in the memory by specifying its

word address.

⚫ Similarly, individual characters can be accessed
by their byte address.

⚫ It is necessary to handle character strings of
variable length.
⚫ The beginning of the string is indicated by giving the

address of the byte containing its first character.

⚫ Successive byte locations contain successive
characters of the string.

Accessing numbers, characters,
and character strings..

⚫ There are two ways to indicate the length
of the string.

⚫ A special control character with the meaning
"end of string" can be used as the last
character in the string.

⚫ Or a separate memory word location or
processor register can contain a number
indicating the length of the string in bytes.

Memory Operations

⚫ Load (or Read or Fetch)
➢ Copy the content. The memory content doesn’t

change.

➢ Address – Load

➢ Registers can be used

⚫ Store (or Write)
➢ Overwrite the content in memory

➢ Address and Data – Store

➢ Registers can be used

Floating-Point Numbers and

Operations

⚫ In the 2’s complement system, the signed value

𝐹, represented by the 𝑛-bit binary fraction

𝐵 = 𝑏0. 𝑏−1𝑏−2…𝑏− 𝑛−1

is given by

𝐹 𝐵 = −𝑏0 × 20+ 𝑏−1 × 2−1 + 𝑏−2 × 2−2 +⋯+ 𝑏− 𝑛−1 × 2− 𝑛−1

where the range of 𝐹 is −1 ≤ 𝐹 ≤ 1 − 2− 𝑛−1

⚫ For 32-bit format, the range is approximately 0 to

± 2.15 × 109 for integers and ±4.55 × 10−10 to

± 1 for fractions.

IEEE Standard for Floating-

Point Numbers

⚫ A binary floating-point number can be

represented by

⚫ A sign for the number

⚫ Some significant bits

⚫ A signed scale factor exponent for an implied

base of 2

⚫ The basic IEEE format is a 32-bit representation,

shown in Figure 6.24a

⚫ Based on 2008 version of IEEE (Institute of Electrical and

Electronics Engineers) Standard 754, labelled 754-2008

IEEE Standard for Floating-

Point Numbers..

⚫ The leftmost bit represents the sign, 𝑆, for the

number.

⚫ The next 8 bits, 𝐸′, represent the signed

exponent of the scale factor (with an implied

base of 2)

⚫ The remaining 23 bits, 𝑀, are the fractional

part of the significant bits.

IEEE Standard for Floating-

Point Numbers..

⚫ The full 24-bit string, B, of significant bits,

called the mantissa, always has a leading 1,

with the binary point immediately to its right.

⚫ Therefore, the mantissa

𝐵 = 1.𝑀 = 1. 𝑏−1𝑏−2…𝑏−23
has the value

V 𝐵 = 1+ 𝑏−1 × 2−1 + 𝑏−2 × 2−2 +⋯+ 𝑏−23 × 2−23

⚫ By convention, when the binary point is

placed to the right of the first significant bit,

the number is said to be normalized.

IEEE Standard for Floating-

Point Numbers..

⚫ Instead of the actual signed exponent, 𝐸,

the value stored in the exponent field is an

unsigned integer 𝐸′ = 𝐸 + 127.

⚫ This is called the excess-127 format.

⚫ 𝐸′ is in the range 0 ≤ 𝐸′ ≤ 255.

⚫ The use of the excess-127 representation

for exponents simplifies comparison of the

relative sizes of two floating-point

numbers.

IEEE Standard for Floating-

Point Numbers..

⚫ 32-bit representation – single-precision

⚫ 8-bit excess-127 exponent 𝐸′ with range 1 ≤ 𝐸′ ≤
254 for normal values

⚫ 0 and 255 indicate special values

⚫ The actual exponent, 𝐸′, is in the range −126 ≤ 𝐸′ ≤
127 providing scale factors of 2−126 to 2127

(approximately 10±38).

⚫ The 54-bit mantissa provides a precision equivalent to

about 7 decimal digits

IEEE Standard for Floating-

Point Numbers..

⚫ 64-bit representation – double-precision

⚫ 11-bit excess-1023 exponent 𝐸′ with range 1 ≤
𝐸′ ≤ 2046 for normal values

⚫ 0 and 2047 indicate special values

⚫ The actual exponent, 𝐸′, is in the range −1022 ≤

E ≤ 1023, providing scale factors of 2−1022 to

21023(approximately 10±308).

⚫ The 53-bit mantissa provides a precision

equivalent to about 16 decimal digits

IEEE Standard for Floating-

Point Numbers..

IEEE Standard for Floating-

Point Numbers..

⚫ Two basic aspects of operating with floating-

point numbers

⚫ First, if a number is not normalized, it can be

put in normalized form by shifting the binary

point and adjusting the exponent.

⚫ Underflow

⚫ Second, as computations proceed, a number

that does not fall in the representable range

of normal numbers might be generated.

⚫ Overflow

Special Values

⚫ The end values 0 and 255 of the excess-127

exponent 𝐸′ are used to represent special

values.

⚫ When 𝐸′ = 0 and 𝑀 = 0, the value 0 is represented.

⚫ When 𝐸′ = 255 and 𝑀 = 0, the value ∞ is

represented.

⚫ When 𝐸′ = 0 and 𝑀 ≠ 0, denormal numbers are

represented.

⚫ When 𝐸′ = 255 and 𝑀 ≠ 0, the value represented is

called Not a Number (NaN).

Instructions and

Instruction

Sequencing

“Must-Perform” Operations

⚫ A computer must have instructions capable of

performing four types of operations:

⚫ Data transfers between the memory and the

processor registers

⚫ Arithmetic and logic operations on data

⚫ Program sequencing and control

⚫ I/O transfers

Register Transfer Notation

⚫ Identify a location by a symbolic name standing

for its hardware binary address

⚫ Names for addresses of memory location may be

LOC, PLACE, A, VAR2

⚫ Processor register names may be R0, R5

⚫ I/O register names may be DATAIN, OUTSTATUS

⚫ Contents of a location are denoted by placing

square brackets around the name of the location

⚫ R1←[LOC]

⚫ R3 ←[R1]+[R2]

Assembly Language Notation

⚫ Represent machine instructions and

programs.

⚫ Move LOC, R1 = R1←[LOC]

⚫ Add R1, R2, R3 = R3 ←[R1]+[R2]

CPU Organization

⚫ Single Accumulator

⚫ Result usually goes to the Accumulator

⚫ Accumulator has to be saved to memory quite

often

⚫ General Register

⚫ Registers hold operands thus reduce memory

traffic

⚫ Register bookkeeping

⚫ Stack

⚫ Operands and result are always in the stack

Basic Instruction Types

⚫ Three-Address Instructions

⚫ Add R1, R2, R3 R3 ← R1 + R2

⚫ Two-Address Instructions

⚫ Add R1, R2 R2 ← R1 + R2

⚫ One-Address Instructions

⚫ Add M AC ← AC + [M]

⚫ Zero-Address Instructions

⚫ Add TOS ← TOS + (TOS – 1)

⚫ RISC Instructions

⚫ Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)

Basic Instruction Types..

Example: Evaluate (A+B)  (C+D)

⚫ Three-Address

1. Add A, B, R1 ; R1 ← [A] + [B]

2. Add C, D, R2 ; R2 ← [C] + [D]

3. Multiply R1, R2, X ; X ← [R1]  [R2]

Basic Instruction Types..

Example: Evaluate (A+B)  (C+D)

⚫ Two-Address

1. Move A, R1 ; R1 ← [A]

2. Add B, R1 ; R1 ← [R1] + [B]

3. Move C, R2 ; R2 ← [C]

4. Add D, R2 ; R2 ← [R2] + [D]

5. Multiply R1, R2 ; R2 ← [R1]  [R2]

6. Move R2, X ; X ← [R2]

Basic Instruction Types..

Example: Evaluate (A+B)  (C+D)

⚫ One-Address

1. Load A ; AC ← A

2. Add B ; AC ← AC + B

3. Store T ; T ← AC

4. Load C ; AC ← [C]

5. Add D ; AC ← AC + [D]

6. Multiply T ; AC ← AC  [T]

7. Store X ; X ← AC

Basic Instruction Types..
Example: Evaluate (A+B)  (C+D)

⚫ Zero-Address

1. Push A ; TOS ← A

2. Push B ; TOS ← B

3. Add ; TOS ← (A + B)

4. Push C ; TOS ← C

5. Push D ; TOS ← D

6. Add ; TOS ← (C + D)

7. Multiply ; TOS ← (C+D)(A+B)

8. Pop X ; X ← TOS

Basic Instruction Types..
Example: Evaluate (A+B)  (C+D)

⚫ RISC

1. Load A, R1 ; R1 ← [A]

2. Load B, R2 ; R2 ← [B]

3. Load C, R3 ; R3 ← [C]

4. Load D, R4 ; R4 ← [D]

5. Add R1, R2 ; R2 ← R1 + R2

6. Add R3, R4 ; R4 ← R3 + R4

7. Multiply R2, R4 ; R4 ← R2  R4

8. Store R4, X ; X ← R4

Using Registers

⚫ Registers are faster

⚫ Shorter instructions

⚫ The number of registers is smaller, only few bits

are needed to specify the register (e.g. 32

registers need 5 bits)

⚫ Potential speedup

⚫ Minimize the frequency with which data is

moved back and forth between the memory

and processor registers.

Instruction Execution and

Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3-instruction

Addi + 4

Figure 2.8. A program for C  [A] + [B].

Assumptions:

- One memory operand

per instruction

- 32-bit word length

- Memory is byte

addressable

- Full memory address

can be directly specified

in a single-word instruction

Two-phase procedure

-Instruction fetch

-Instruction execute

Page 43

Branching

NUMn

NUM2

NUM1

R0,SUM

NUMn,R0

NUM3,R0

NUM2,R0

NUM1,R0

Figure 2.9. A straight-line program for adding n numbers.

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4-+

i 8+

i 4+

•
•
•

•
•
•

•
•
•

Branching

N,R1Move

NUM n

NUM2

NUM1

R0,SUM

R1

"Next" number to R0

Figure 2.10. Using a loop to add n numbers.

LOOP

Decrement

Move

LOOP

loop
Program

Determine address of
"Next" number and add

N

SUM

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch

Condition Codes

⚫ The processor keeps track of information

about the results of various operations for

use by subsequent conditional branch

instructions.

⚫ Accomplished by recording the required

information in individual bits, often called condition

code flags.

⚫ These flags are usually grouped together in a

special processor register called the condition

code register or status register.

Condition Codes

⚫ Four commonly used flags are

⚫ N (negative)

⚫ Set to 1 if the result is negative; otherwise, cleared to 0

⚫ Z (zero)

⚫ Set to 1 if the result is 0; otherwise, cleared to 0

⚫ V (overflow)

⚫ Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0

⚫ C (carry)

⚫ Set to 1 if a carry-out results from the operation; otherwise,

cleared to 0

Conditional Branch

Instructions

⚫ Example:

⚫ A: 1 1 1 1 0 0 0 0

⚫ B: 0 0 0 1 0 1 0 0

A: 1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

C = 1

N = 1

V = 0

Z = 0

Status Bits

ALU

V Z N C

Zero Check

Cn

Cn-1

Fn-1

A B

F

