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Machine Instructions 

and Programs - Part 1

Module 1



Numbers, Arithmetic 

Operations, and 

Characters



Introduction

⚫ Computers are built using logic circuits that 

operate on information represented by two-

valued electrical signals

⚫ Labelled as 0 and 1

⚫ We define the amount of information 

represented by such a signal as a bit of 

information, where bit stands for binary digit.

⚫ The most natural way to represent a number 

in a computer system is by a string of bits, 

called a binary number. 



Number Representation

⚫ Consider an n-bit vector

𝐵 = 𝑏𝑛−1……𝑏1𝑏0
Where 𝑏𝑖 = 0 𝑜𝑟 1 for 0 ≤ 𝑖 ≤ 𝑛 − 1

⚫ This vector can represent unsigned integer 

values 𝑉 in the range 0 to 2𝑛 − 1, where 

𝑉 𝐵 = 𝑏𝑛−1 × 2𝑛−1 +⋯+ 𝑏1 × 21 + 𝑏0 × 20

⚫ We obviously need to represent both positive 

and negative numbers.



Signed Integer

⚫ 3 major representations:
⚫ Sign-and-magnitude

⚫ 1’s complement

⚫ 2’s complement

⚫ Assumptions:
⚫ 4-bit machine word

⚫ 16 different values can be represented

⚫ Roughly half are positive, half are negative



Sign-and-Magnitude Representation
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High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits = +/-2n-1 -1
Two representations for 0



1’s Complement Representation

⚫ Subtraction implemented by addition & 1's complement

⚫ Still two representations of 0!  This causes some problems

⚫ Some complexities in addition
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2’s Complement Representation
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⚫ Only one representation for 0

⚫ One more negative number than positive 

number
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Binary, Signed-Integer 

Representations
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Figure 2.1. Binary, signed-integer representations.
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Addition of Positive Numbers



Addition and Subtraction of 

Signed Numbers



Addition and Subtraction – 2’s 

Complement

⚫ To add two numbers, add their n-bit 

representations, ignoring the carry-out signal 

from the most significant bit (MSB) position. 

The sum will be the algebraically correct 

value in the 2’s complement representation 

as long as the answer is in the range −2𝑛−1

through +2𝑛−1 − 1.



Addition and Subtraction – 2’s 

Complement..

⚫ To subtract two numbers 𝑋 and 𝑌, that is, to 

perform 𝑋 − 𝑌, form the 2’s complement of 𝑌
and then add it to 𝑋. Again, the result will be 

the algebraically correct value in the 2’s 

complement representation system if the 

answer is in the range −2𝑛−1 through 

+ 2𝑛−1 − 1.



Examples
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choice for integer number systems within digital systems
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Overflow - Add two positive numbers to get a 

negative number or two negative numbers to 

get a positive number

5 + 3 = -8 -7 - 2 = +7
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Overflow Conditions
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Characters

⚫ In addition to numbers, computers must be 

able to handle nonnumeric text information 

consisting of characters.

⚫ Characters can be letters of the alphabet, 

decimal digits, punctuation marks, and so on.

⚫ They are represented by codes that are 

usually eight bits long. 

⚫ American Standards Committee on Information 

Interchange (ASCII) code is widely used.



ASCII Table



Memory Locations, 

and Addresses



Memory Locations and 

Addresses

⚫ Memory consists 

of many millions of 

storage cells, 

each of which can 

store 1 bit.

⚫ Data is usually 

accessed in n-bit 

groups called 

words.

⚫ n is called word 

length.

second word

first word

Figure 2.5.   Memory words.

nbits

last word

i th word

•
•
•

•
•
•



Memory Locations and 

Addresses..

⚫ 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers
for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=

b31 1=

• • •



Memory Locations and 

Addresses..

⚫ To retrieve information from memory, either for one 

word or one byte (8-bit), addresses for each location 

are needed.

⚫ A k-bit address memory has 2k memory locations, 

namely 0 – 2k-1, called memory space.

⚫ 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

⚫ 32-bit memory: 232 = 4G (1G=230)

⚫ 1K(kilo)=210

⚫ 1T(tera)=240



Byte Addressability

⚫ A byte is always 8 bits, but the word length typically 

ranges from 16 to 64 bits.

⚫ It is impractical to assign distinct addresses to 

individual bit locations in the memory.

⚫ The most practical assignment is to have successive 

addresses refer to successive byte locations in the 

memory – byte-addressable memory.

⚫ Byte locations have addresses 0, 1, 2, … If word 

length is 32 bits, they successive words are located 

at addresses 0, 4, 8,…



Big-Endian and Little-Endian 

Assignments
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Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant 

bytes of the word



Word Alignment

⚫ Address ordering of bytes

⚫ Word alignment

⚫ Words are said to be aligned in memory if they 
begin at a byte address. that is a multiple of the 
num of bytes in a word.

⚫ 16-bit word: word addresses: 0, 2, 4,….

⚫ 32-bit word: word addresses: 0, 4, 8,….

⚫ 64-bit word: word addresses: 0, 8,16,….



Accessing numbers, characters, 
and character strings

⚫ A number usually occupies one word.
⚫ It can be accessed in the memory by specifying its 

word address.

⚫ Similarly, individual characters can be accessed 
by their byte address.

⚫ It is necessary to handle character strings of 
variable length.
⚫ The beginning of the string is indicated by giving the 

address of the byte containing its first character. 

⚫ Successive byte locations contain successive 
characters of the string.



Accessing numbers, characters, 
and character strings..

⚫ There are two ways to indicate the length 
of the string.

⚫ A special control character with the meaning 
"end of string" can be used as the last 
character in the string. 

⚫ Or a separate memory word location or 
processor register can contain a number 
indicating the length of the string in bytes. 



Memory Operations

⚫ Load (or Read or Fetch)
➢ Copy the content. The memory content doesn’t 

change.

➢ Address – Load

➢ Registers can be used

⚫ Store (or Write)
➢ Overwrite the content in memory

➢ Address and Data – Store

➢ Registers can be used



Floating-Point Numbers and 

Operations

⚫ In the 2’s complement system, the signed value 

𝐹, represented by the 𝑛-bit binary fraction

𝐵 = 𝑏0. 𝑏−1𝑏−2…𝑏− 𝑛−1

is given by 

𝐹 𝐵 = −𝑏0 × 20+ 𝑏−1 × 2−1 + 𝑏−2 × 2−2 +⋯+ 𝑏− 𝑛−1 × 2− 𝑛−1

where the range of 𝐹 is −1 ≤ 𝐹 ≤ 1 − 2− 𝑛−1

⚫ For 32-bit format, the range is approximately 0 to 

± 2.15 × 109 for integers and ±4.55 × 10−10 to 

± 1 for fractions.



IEEE Standard for Floating-

Point Numbers

⚫ A binary floating-point number can be 

represented by

⚫ A sign for the number

⚫ Some significant bits

⚫ A signed scale factor exponent for an implied 

base of 2

⚫ The basic IEEE format is a 32-bit representation, 

shown in Figure 6.24a

⚫ Based on 2008 version of IEEE (Institute of Electrical and 

Electronics Engineers) Standard 754, labelled 754-2008





IEEE Standard for Floating-

Point Numbers..

⚫ The leftmost bit represents the sign, 𝑆, for the 

number.

⚫ The next 8 bits, 𝐸′, represent the signed 

exponent of the scale factor (with an implied 

base of 2)

⚫ The remaining 23 bits, 𝑀, are the fractional 

part of the significant bits.



IEEE Standard for Floating-

Point Numbers..

⚫ The full 24-bit string, B, of significant bits, 

called the mantissa, always has a leading 1, 

with the binary point immediately to its right.

⚫ Therefore, the mantissa

𝐵 = 1.𝑀 = 1. 𝑏−1𝑏−2…𝑏−23
has the value

V 𝐵 = 1+ 𝑏−1 × 2−1 + 𝑏−2 × 2−2 +⋯+ 𝑏−23 × 2−23

⚫ By convention, when the binary point is 

placed to the right of the first significant bit, 

the number is said to be normalized.



IEEE Standard for Floating-

Point Numbers..

⚫ Instead of the actual signed exponent, 𝐸, 

the value stored in the exponent field is an 

unsigned integer 𝐸′ = 𝐸 + 127. 

⚫ This is called the excess-127 format.

⚫ 𝐸′ is in the range 0 ≤ 𝐸′ ≤ 255.

⚫ The use of the excess-127 representation 

for exponents simplifies comparison of the 

relative sizes of two floating-point 

numbers.



IEEE Standard for Floating-

Point Numbers..

⚫ 32-bit representation – single-precision

⚫ 8-bit excess-127 exponent 𝐸′ with range 1 ≤ 𝐸′ ≤
254 for normal values

⚫ 0 and 255 indicate special values

⚫ The actual exponent, 𝐸′, is in the range −126 ≤ 𝐸′ ≤
127 providing scale factors of 2−126 to 2127

(approximately 10±38).

⚫ The 54-bit mantissa provides a precision equivalent to 

about 7 decimal digits



IEEE Standard for Floating-

Point Numbers..

⚫ 64-bit representation – double-precision

⚫ 11-bit excess-1023 exponent 𝐸′ with range 1 ≤
𝐸′ ≤ 2046 for normal values

⚫ 0 and 2047 indicate special values

⚫ The actual exponent, 𝐸′, is in the range −1022 ≤ 

E ≤ 1023, providing scale factors of 2−1022 to 

21023(approximately 10±308).

⚫ The 53-bit mantissa provides a precision 

equivalent to about 16 decimal digits



IEEE Standard for Floating-

Point Numbers..



IEEE Standard for Floating-

Point Numbers..

⚫ Two basic aspects of operating with floating-

point numbers

⚫ First, if a number is not normalized, it can be 

put in normalized form by shifting the binary 

point and adjusting the exponent.

⚫ Underflow

⚫ Second, as computations proceed, a number 

that does not fall in the representable range 

of normal numbers might be generated.

⚫ Overflow



Special Values

⚫ The end values 0 and 255 of the excess-127 

exponent 𝐸′ are used to represent special 

values.

⚫ When 𝐸′ = 0 and 𝑀 = 0, the value 0 is represented.

⚫ When 𝐸′ = 255 and 𝑀 = 0, the value ∞ is 

represented.

⚫ When 𝐸′ = 0 and 𝑀 ≠ 0, denormal numbers are 

represented.

⚫ When 𝐸′ = 255 and 𝑀 ≠ 0, the value represented is 

called Not a Number (NaN).



Instructions and 

Instruction 

Sequencing



“Must-Perform” Operations

⚫ A computer must have instructions capable of 

performing four types of operations: 

⚫ Data transfers between the memory and the 

processor registers

⚫ Arithmetic and logic operations on data

⚫ Program sequencing and control

⚫ I/O transfers



Register Transfer Notation

⚫ Identify a location by a symbolic name standing 

for its hardware binary address

⚫ Names for addresses of memory location may be 

LOC, PLACE, A, VAR2

⚫ Processor register names may be R0, R5

⚫ I/O register names may be DATAIN, OUTSTATUS

⚫ Contents of a location are denoted by placing 

square brackets around the name of the location 

⚫ R1←[LOC]

⚫ R3 ←[R1]+[R2]



Assembly Language Notation

⚫ Represent machine instructions and 

programs.

⚫ Move LOC, R1 = R1←[LOC]

⚫ Add R1, R2, R3 = R3 ←[R1]+[R2]



CPU Organization

⚫ Single Accumulator

⚫ Result usually goes to the Accumulator

⚫ Accumulator has to be saved to memory quite 

often

⚫ General Register

⚫ Registers hold operands thus reduce memory 

traffic

⚫ Register bookkeeping

⚫ Stack

⚫ Operands and result are always in the stack



Basic Instruction Types

⚫ Three-Address Instructions

⚫ Add R1, R2, R3 R3 ← R1 + R2

⚫ Two-Address Instructions

⚫ Add R1, R2 R2 ← R1 + R2

⚫ One-Address Instructions

⚫ Add M AC ← AC + [M]

⚫ Zero-Address Instructions

⚫ Add TOS ← TOS + (TOS – 1)

⚫ RISC Instructions

⚫ Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)



Basic Instruction Types..

Example:   Evaluate (A+B)  (C+D)

⚫ Three-Address

1. Add A, B, R1 ; R1 ← [A] + [B]

2. Add C, D, R2 ; R2 ← [C] + [D]

3. Multiply R1, R2, X ; X ← [R1]  [R2]



Basic Instruction Types..

Example:   Evaluate (A+B)  (C+D)

⚫ Two-Address

1. Move A, R1 ; R1 ← [A]

2. Add B, R1 ; R1 ← [R1] + [B]

3. Move C, R2 ; R2 ← [C]

4. Add D, R2 ; R2 ← [R2] + [D]

5. Multiply R1, R2 ; R2 ← [R1]  [R2]

6. Move R2, X ; X ← [R2]



Basic Instruction Types..

Example:   Evaluate (A+B)  (C+D)

⚫ One-Address

1. Load A ; AC ← A

2. Add B ; AC ← AC + B

3. Store T ; T ← AC 

4. Load C ; AC ← [C]

5. Add D ; AC ← AC + [D]

6. Multiply T ; AC ← AC  [T]

7. Store X ; X ← AC



Basic Instruction Types..
Example:   Evaluate (A+B)  (C+D)

⚫ Zero-Address

1. Push A ; TOS ← A

2. Push B ; TOS ← B

3. Add ; TOS ← (A + B)

4. Push C ; TOS ← C

5. Push D ; TOS ← D

6. Add ; TOS ← (C + D)

7. Multiply ; TOS ← (C+D)(A+B)

8. Pop X ; X ← TOS



Basic Instruction Types..
Example:   Evaluate (A+B)  (C+D)

⚫ RISC

1. Load A, R1 ; R1 ← [A]

2. Load B, R2 ; R2 ← [B]

3. Load C, R3 ; R3 ← [C]

4. Load D, R4 ; R4 ← [D]

5. Add R1, R2 ; R2 ← R1 + R2

6. Add R3, R4 ; R4 ← R3 + R4

7. Multiply R2, R4 ; R4 ← R2  R4

8. Store R4, X ; X ← R4



Using Registers

⚫ Registers are faster

⚫ Shorter instructions

⚫ The number of registers is smaller, only few bits 

are needed to specify the register (e.g. 32 

registers need 5 bits)

⚫ Potential speedup

⚫ Minimize the frequency with which data is 

moved back and forth between the memory 

and processor registers.



Instruction Execution and 

Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3-instruction

Addi + 4

Figure 2.8.  A program for C  [A] + [B].

Assumptions:

- One memory operand

per instruction

- 32-bit word length

- Memory is byte

addressable

- Full memory address

can be directly specified

in a single-word instruction

Two-phase procedure

-Instruction fetch

-Instruction execute
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Branching

NUMn

NUM2

NUM1

R0,SUM

NUMn,R0

NUM3,R0

NUM2,R0

NUM1,R0

Figure 2.9.   A straight-line  program for adding n numbers.

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4-+

i 8+

i 4+

•
•
•

•
•
•

•
•
•



Branching

N,R1Move

NUM n

NUM2

NUM1

R0,SUM

R1

"Next" number to R0

Figure 2.10.   Using a loop to add n numbers.

LOOP

Decrement

Move

LOOP

loop
Program

Determine address of
"Next" number and add

N

SUM

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch



Condition Codes

⚫ The processor keeps track of information 

about the results of various operations for 

use by subsequent conditional branch 

instructions.

⚫ Accomplished by recording the required 

information in individual bits, often called condition 

code flags. 

⚫ These flags are usually grouped together in a 

special processor register called the condition 

code register or status register. 



Condition Codes

⚫ Four commonly used flags are 

⚫ N (negative) 

⚫ Set to 1 if the result is negative; otherwise, cleared to 0 

⚫ Z (zero) 

⚫ Set to 1 if the result is 0; otherwise, cleared to 0 

⚫ V (overflow) 

⚫ Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0

⚫ C (carry) 

⚫ Set to 1 if a carry-out results from the operation; otherwise, 

cleared to 0 



Conditional Branch 

Instructions

⚫ Example:

⚫ A:  1 1 1 1 0 0 0 0

⚫ B:  0 0 0 1 0 1 0 0

A:      1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

C = 1

N = 1

V = 0

Z = 0



Status Bits

ALU

V Z N C

Zero Check

Cn

Cn-1

Fn-1

A B

F


