Computer Organization and Architecture

Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer Organization, 5th Edition, Tata McGraw Hill, 2002.

Machine Instructions and Programs - Part 1

Module 1

Numbers, Arithmetic Operations, and Characters

Introduction

- Computers are built using logic circuits that operate on information represented by twovalued electrical signals
- Labelled as 0 and 1
- We define the amount of information represented by such a signal as a bit of information, where bit stands for binary digit.
- The most natural way to represent a number in a computer system is by a string of bits, called a binary number.

Number Representation

- Consider an n -bit vector

$$
B=b_{n-1} \ldots \ldots b_{1} b_{0}
$$

Where $b_{i}=0$ or 1 for $0 \leq i \leq n-1$

- This vector can represent unsigned integer values V in the range 0 to $2^{n}-1$, where $V(B)=b_{n-1} \times 2^{n-1}+\cdots+b_{1} \times 2^{1}+b_{0} \times 2^{0}$
- We obviously need to represent both positive and negative numbers.

Signed Integer

- 3 major representations:
- Sign-and-magnitude
- 1's complement
- 2's complement
- Assumptions:
- 4-bit machine word
- 16 different values can be represented
- Roughly half are positive, half are negative

Sign-and-Magnitude Representation

High order bit is sign: $0=$ positive (or zero), $1=$ negative Three low order bits is the magnitude: 0 (000) thru 7 (111) Number range for n bits $=+/-2^{n-1}-1$
Two representations for 0

1's Complement Representation

- Subtraction implemented by addition \& 1's complement
- Still two representations of 0! This causes some problems
- Some complexities in addition

2's Complement Representation

- Only one representation for 0
- One more negative number than positive number

Binary, Signed-Integer Representations

Page 28

B
Values represented

Sign and

b_{3}	b_{2}	$b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0	1	1	1	+7	+7
0	1	1	0	+6	+6
0	1	0	1	+5	+5
0	1	0	0	+4	+4
0	0	1	1	+3	+3
0	0	1	0	+2	+2
0	0	0	1	+1	+1
0	0	0	0	+0	+0
1	0	0	0	-0	-7
1	0	0	1	-1	-6
1	0	1	0	-2	-5
1	0	1	1	-3	-4
1	1	0	0	-4	-3
1	1	0	1	-5	-2
1	1	1	0	-6	-2
1	1	1	1	-7	-1

Figure 2.1. Binary, signed-integer representations.

Addition of Positive Numbers

Figure 2.2 Addition of 1 -bit numbers.

Addition and Subtraction of Signed Numbers

(a) Circle representation of integers $\bmod N$

(b) Mod 16 system for 2's-complement numbers

Figure 2.3 Modular number systems and the 2'scomplement system.

Addition and Subtraction - 2's Complement

- To add two numbers, add their n-bit representations, ignoring the carry-out signal from the most significant bit (MSB) position. The sum will be the algebraically correct value in the 2's complement representation as long as the answer is in the range -2^{n-1} through $+2^{n-1}-1$.

Addition and Subtraction - 2's Complement..

- To subtract two numbers X and Y, that is, to perform $X-Y$, form the 2's complement of Y and then add it to X. Again, the result will be the algebraically correct value in the 2's complement representation system if the answer is in the range -2^{n-1} through $+2^{n-1}-1$.

Examples

If carry-in to the high order bit = carry-out then ignore carry
if carry-in differs from carry-out then overflow

4	0100	-4	1100
+3	0011	$+(-3)$	$\frac{1101}{7}$
0111	-7	11001	

| 4 | 0100 | -4 | 1100 |
| ---: | ---: | ---: | ---: | ---: |
| -3 | 1101 | +3 | 0011 |
| 1 | 10001 | | 1111 |

Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

Examples

Page 31

(a)	$\begin{array}{r} 0010 \\ +\quad 0011 \\ \hline \end{array}$	$\binom{+2}{+3}$	(b)	$\begin{array}{r} 0100 \\ +1010 \\ \hline \end{array}$	$\begin{array}{r} (+4) \\ (-6) \\ \hline \end{array}$
	0101	$(+5)$		1110	(-2)
(c)	$\begin{array}{r} 1011 \\ +\quad 1110 \\ \hline \end{array}$	$\begin{aligned} & (-5) \\ & (-2) \\ & \hline \end{aligned}$	(d)	$\begin{array}{r} 0111 \\ +\quad 1101 \\ \hline \end{array}$	$\begin{array}{r} (+7) \\ (-3) \\ \hline \end{array}$
	1001	(-7)		0100	$(+4)$
(e)	$\begin{array}{r} 1101 \\ -\quad 1001 \\ \hline \end{array}$	$\begin{aligned} & (-3) \\ & (-7) \\ & \hline \end{aligned}$	\Longrightarrow	$\begin{array}{r} 1101 \\ +\quad 0111 \\ \hline \end{array}$	
				0100	(+ 4)
(f)	$\begin{array}{r} 0010 \\ -\quad 0100 \\ \hline \end{array}$	$\binom{+2}{+4}$		$\begin{array}{r} 0010 \\ +\quad 1100 \\ \hline \end{array}$	
				1110	(-2)
(g)	$\begin{array}{r} 0110 \\ -\quad 0011 \end{array}$	$\binom{+6}{+3}$		$\begin{array}{r} 0110 \\ +\quad 1101 \end{array}$	
				0011	$(+3)$
(h)	$\begin{array}{r} 1001 \\ -\quad 1011 \\ \hline \end{array}$	$\begin{array}{r} (-7) \\ (-5) \end{array}$	\Longrightarrow	$\begin{array}{r} 1001 \\ +\quad 0101 \\ \hline \end{array}$	
				1110	(-2)
(i)	$\begin{array}{r} 1001 \\ -\quad 0001 \\ \hline \end{array}$	$\begin{aligned} & (-7) \\ & (+1) \\ & \hline \end{aligned}$	\Longrightarrow	$\begin{array}{r} 1001 \\ +\quad 1111 \\ \hline \end{array}$	
				1000	(-8)
(j)	$\begin{array}{r} 0010 \\ -\quad 1101 \\ \hline \end{array}$	$\begin{array}{r} (+2) \\ (-3) \\ \hline \end{array}$	\longrightarrow	$\begin{array}{r} 0010 \\ +\quad 0011 \\ \hline \end{array}$	
				0101	$(+5)$

Figure 2.4. 2's-complement Add and Subtract operations.

Overflow - Add two positive numbers to get a negative number or two negative numbers to get a positive number

Overflow Conditions

5	$\begin{array}{r} 0111 \\ 0101 \end{array}$	-7	$\begin{array}{r} 1000 \\ 1001 \end{array}$
3	0011	-2	1100
-8	1000	7	10111
Ove		Ove	
5	$\begin{array}{rll} 0 & 0 & 0 \\ 0 & 10 \\ 0 \end{array}$	-3	$\begin{array}{r} 1111 \\ 1101 \end{array}$
2	0010	-5	1011
7	0111	-8	11000
No overflow		No overflow	

Overflow when carry-in to the high-order bit does not equal carry out

Characters

- In addition to numbers, computers must be able to handle nonnumeric text information consisting of characters.
- Characters can be letters of the alphabet, decimal digits, punctuation marks, and so on.
- They are represented by codes that are usually eight bits long.
- American Standards Committee on Information Interchange (ASCII) code is widely used.

ASCII Table

Char	Dec	Oct	Hex	Char	Dec	Oct	Hex	Char	Dec	Oct	Hex
(sp)	32	0040	0×20	@	64	0100	0x40	,	96	0140	0x60
!	33	0041	0×21	A	65	0101	0×41	a	97	0141	0×61
"	34	0042	0×22	B	66	0102	0x42	b	98	0142	0×62
\#	35	0043	0×23	C	67	0103	0x43	c	99	0143	0×63
\$	36	0044	0×24	D	68	0104	0x44	d	100	0144	0×64
\%	37	0045	0x25	E	69	0105	0×45	e	101	0145	0×65
\&	38	0046	0×26	F	70	0106	0x46	f	102	0146	0×66
'	39	0047	0×27	G	71	0107	0×47	g	103	0147	0×67
(40	0050	0×28	H	72	0110	0x48	h	104	0150	0×68
)	41	0051	0×29	I	73	0111	0×49	i	105	0151	0×69
*	42	0052	$0 \times 2 \mathrm{a}$	J	74	0112	$0 \times 4 \mathrm{a}$	j	106	0152	$0 \times 6 \mathrm{a}$
+	43	0053	0x2b	K	75	0113	0x4b	k	107	0153	0x6b
,	44	0054	0x2c	L	76	0114	0x4c	I	108	0154	$0 \times 6 \mathrm{c}$
-	45	0055	0x2d	M	77	0115	0x4d	m	109	0155	$0 \times 6 \mathrm{~d}$
.	46	0056	$0 \times 2 \mathrm{e}$	N	78	0116	$0 \times 4 \mathrm{e}$	n	110	0156	$0 \times 6 \mathrm{e}$
1	47	0057	0x2f	0	79	0117	0x4f	0	111	0157	$0 \times 6 f$
0	48	0060	0x30	P	80	0120	0×50	p	112	0160	0x70
1	49	0061	0x31	Q	81	0121	0×51	q	113	0161	0x71
2	50	0062	0×32	R	82	0122	0×52	r	114	0162	0x72
3	51	0063	0x33	S	83	0123	0×53	S	115	0163	0x73
4	52	0064	0x34	T	84	0124	0×54	t	116	0164	0×74
5	53	0065	0x35	U	85	0125	0×55	u	117	0165	0x75
6	54	0066	0×36	V	86	0126	0×56	v	118	0166	0x76
7	55	0067	0×37	W	87	0127	0×57	w	119	0167	0x77
8	56	0070	0×38	X	88	0130	0×58	x	120	0170	0x78
9	57	0071	0×39	Y	89	0131	0×59	y	121	0171	0x79
:	58	0072	$0 \times 3 \mathrm{a}$	Z	90	0132	$0 \times 5 \mathrm{a}$	z	122	0172	$0 \times 7 \mathrm{a}$
,	59	0073	0x3b	[91	0133	$0 \times 5 \mathrm{~b}$	\{	123	0173	$0 \times 7 \mathrm{~b}$
$<$	60	0074	0x3c	1	92	0134	$0 \times 5 \mathrm{c}$	\|	124	0174	0x7c
$=$	61	0075	0x3d]	93	0135	0x5d	\}	125	0175	0x7d
>	62	0076	$0 \times 3 \mathrm{e}$	\wedge	94	0136	$0 \times 5 \mathrm{e}$	\sim	126	0176	$0 \times 7 \mathrm{e}$
?	63	0077	0x3f	-	95	0137	$0 \times 5 f$				

Memory Locations, and Addresses

Memory Locations and

 Addresses- Memory consists of many millions of storage cells, each of which can store 1 bit.
- Data is usually accessed in n-bit groups called words.
- n is called word length.

Figure 2.5. Memory words.

Memory Locations and Addresses..

- 32-bit word length example

32 bits

| b_{31} | b_{30} | b_{1} | b_{0} |
| :--- | :--- | :--- | :--- | :--- |

$\left\lfloor\right.$ sign bit: $b_{31}=0$ for positive numbers
$b_{31}=1$ for negative numbers
(a) A signed integer

(b) Four characters

Figure 2.6 Examples of encoded information in a 32 bit word.

Memory Locations and Addresses..

- To retrieve information from memory, either for one word or one byte (8-bit), addresses for each location are needed.
- A k-bit address memory has 2^{k} memory locations, namely $0-2^{k}-1$, called memory space.
- 24-bit memory: $2^{24}=16,777,216=16 \mathrm{M}\left(1 \mathrm{M}=2^{20}\right)$
- 32-bit memory: $2^{32}=4 \mathrm{G}\left(1 \mathrm{G}=2^{30}\right)$
- $1 \mathrm{~K}($ kilo $)=2^{10}$
- $1 \mathrm{~T}($ tera $)=2^{40}$

Byte Addressability

- A byte is always 8 bits, but the word length typically ranges from 16 to 64 bits.
- It is impractical to assign distinct addresses to individual bit locations in the memory.
- The most practical assignment is to have successive addresses refer to successive byte locations in the memory - byte-addressable memory.
- Byte locations have addresses $0,1,2, \ldots$ If word length is 32 bits, they successive words are located at addresses $0,4,8, \ldots$

Big-Endian and Little-Endian Assignments

Big-Endian: lower byte addresses are used for the most significant bytes of the word Little-Endian: opposite ordering. lower byte addresses are used for the less significant bytes of the word

Word
address
Byte address

0	0	1	2	3
4	4	5	6	7

(a) Big-endian assignment

Byte address

0	3	2	1	0
4	7	6	5	4
			-	
$2^{k}-4$	$2^{k}-1$	$2^{k}-2$	$2^{k}-3$	$2^{k}-4$

(b) Little-endian assignment

Figure 2.7. Byte and word addressing.

Word Alignment

- Address ordering of bytes
- Word alignment
- Words are said to be aligned in memory if they begin at a byte address. that is a multiple of the num of bytes in a word.
- 16-bit word: word addresses: $0,2,4, \ldots$.
- 32-bit word: word addresses: $0,4,8, \ldots$.
- 64-bit word: word addresses: $0,8,16, \ldots$.

Accessing numbers, characters, and character strings

- A number usually occupies one word.
- It can be accessed in the memory by specifying its word address.
- Similarly, individual characters can be accessed by their byte address.
- It is necessary to handle character strings of variable length.
- The beginning of the string is indicated by giving the address of the byte containing its first character.
- Successive byte locations contain successive characters of the string.

Accessing numbers, characters, and character strings..

- There are two ways to indicate the length of the string.
- A special control character with the meaning "end of string" can be used as the last character in the string.
- Or a separate memory word location or processor register can contain a number indicating the length of the string in bytes.

Memory Operations

- Load (or Read or Fetch)
> Copy the content. The memory content doesn't change.
> Address - Load
> Registers can be used
- Store (or Write)
> Overwrite the content in memory
> Address and Data - Store
> Registers can be used

Floating-Point Numbers and Operations

- In the 2's complement system, the signed value F, represented by the n-bit binary fraction

$$
B=b_{0} \cdot b_{-1} b_{-2} \ldots b_{-(n-1)}
$$

is given by

$$
F(B)=-b_{0} \times 2^{0}+b_{-1} \times 2^{-1}+b_{-2} \times 2^{-2}+\cdots+b_{-(n-1)} \times 2^{-(n-1)}
$$

where the range of F is $-1 \leq F \leq 1-2^{-(n-1)}$

- For 32-bit format, the range is approximately 0 to $\pm 2.15 \times 10^{9}$ for integers and $\pm 4.55 \times 10^{-10}$ to ± 1 for fractions.

IEEE Standard for FloatingPoint Numbers

- A binary floating-point number can be represented by
- A sign for the number
- Some significant bits
- A signed scale factor exponent for an implied base of 2
- The basic IEEE format is a 32-bit representation, shown in Figure 6.24a
- Based on 2008 version of IEEE (Institute of Electrical and Electronics Engineers) Standard 754, labelled 754-2008

(a) Single precision

$$
\begin{array}{l|lllllllllll}
0 & 00101000 \cdot 001010 \ldots & 0
\end{array}
$$

Value represented $=1.001010 \ldots 0 \times 2^{-87}$
(b) Example of a single-precision number

Value represented $= \pm 1 . M \times 2^{E^{\prime}-1023}$
(c) Double precision

Figure 6.24 IEEE standard floating-point formats.

IEEE Standard for FloatingPoint Numbers..

- The leftmost bit represents the sign, S, for the number.
- The next 8 bits, E^{\prime}, represent the signed exponent of the scale factor (with an implied base of 2)
- The remaining 23 bits, M, are the fractional part of the significant bits.

IEEE Standard for FloatingPoint Numbers..

- The full 24 -bit string, B, of significant bits, called the mantissa, always has a leading 1 , with the binary point immediately to its right.
- Therefore, the mantissa

$$
B=1 . M=1 . b_{-1} b_{-2} \ldots b_{-23}
$$

has the value

$$
\mathrm{V}(B)=1+b_{-1} \times 2^{-1}+b_{-2} \times 2^{-2}+\cdots+b_{-23} \times 2^{-23}
$$

- By convention, when the binary point is placed to the right of the first significant bit, the number is said to be normalized.

IEEE Standard for FloatingPoint Numbers..

- Instead of the actual signed exponent, E, the value stored in the exponent field is an unsigned integer $E^{\prime}=E+127$.
- This is called the excess-127 format.
- E^{\prime} is in the range $0 \leq E^{\prime} \leq 255$.
- The use of the excess-127 representation for exponents simplifies comparison of the relative sizes of two floating-point numbers.

IEEE Standard for FloatingPoint Numbers..

- 32-bit representation - single-precision
- 8-bit excess-127 exponent E^{\prime} with range $1 \leq E^{\prime} \leq$ 254 for normal values
- 0 and 255 indicate special values
- The actual exponent, E^{\prime}, is in the range $-126 \leq E^{\prime} \leq$ 127 providing scale factors of 2^{-126} to 2^{127} (approximately $10^{ \pm 38}$).
- The 54-bit mantissa provides a precision equivalent to about 7 decimal digits

IEEE Standard for FloatingPoint Numbers..

- 64-bit representation - double-precision
- 11-bit excess-1023 exponent E^{\prime} with range $1 \leq$ $E^{\prime} \leq 2046$ for normal values
- 0 and 2047 indicate special values
- The actual exponent, E^{\prime}, is in the range $-1022 \leq$ $E \leq 1023$, providing scale factors of 2^{-1022} to 2^{1023} (approximately $10^{ \pm 308}$).
- The 53-bit mantissa provides a precision equivalent to about 16 decimal digits

IEEE Standard for FloatingPoint Numbers..

excess-127 exponent

(There is no implicit 1 to the left of the binary point.)

$$
\text { Value represented }=+0.0010110 \ldots \times 2^{9}
$$

(a) Unnormalized value

$$
\begin{array}{l|llllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & \ldots \\
\hline
\end{array}
$$

$$
\text { Value represented }=+1.0110 \ldots \times 2^{6}
$$

(b) Normalized version

Figure 6.25 Floating-point normalization in IEEE single-precision format.

IEEE Standard for FloatingPoint Numbers..

- Two basic aspects of operating with floatingpoint numbers
- First, if a number is not normalized, it can be put in normalized form by shifting the binary point and adjusting the exponent.

\author{

- Underflow
}
- Second, as computations proceed, a number that does not fall in the representable range of normal numbers might be generated.
- Overflow

Special Values

- The end values 0 and 255 of the excess-127 exponent E^{\prime} are used to represent special values.
- When $E^{\prime}=0$ and $M=0$, the value 0 is represented.
- When $E^{\prime}=255$ and $M=0$, the value ∞ is represented.
- When $E^{\prime}=0$ and $M \neq 0$, denormal numbers are represented.
- When $E^{\prime}=255$ and $M \neq 0$, the value represented is called Not a Number (NaN).

Instructions and Instruction Sequencing

"Must-Perform" Operations

- A computer must have instructions capable of performing four types of operations:
- Data transfers between the memory and the processor registers
- Arithmetic and logic operations on data
- Program sequencing and control
- I/O transfers

Register Transfer Notation

- Identify a location by a symbolic name standing for its hardware binary address
- Names for addresses of memory location may be LOC, PLACE, A, VAR2
- Processor register names may be R0, R5
- I/O register names may be DATAIN, OUTSTATUS
- Contents of a location are denoted by placing square brackets around the name of the location
- R1ヶ[LOC]
- R3 $\leftarrow[R 1]+[R 2]$

Assembly Language Notation

- Represent machine instructions and programs.
- Move LOC, R1 = R1 $\leftarrow[L O C]$
- Add R1, R2, R3 = R3 $\leftarrow[R 1]+[R 2]$

CPU Organization

- Single Accumulator
- Result usually goes to the Accumulator
- Accumulator has to be saved to memory quite often
- General Register
- Registers hold operands thus reduce memory traffic
- Register bookkeeping
- Stack
- Operands and result are always in the stack

Basic Instruction Types

- Three-Address Instructions
- Add
R1, R2, R3
$\mathrm{R} 3 \leftarrow \mathrm{R} 1+\mathrm{R} 2$
- Two-Address Instructions
- Add
R1, R2
$\mathrm{R} 2 \leftarrow \mathrm{R} 1+\mathrm{R} 2$
- One-Address Instructions
- Add M
$A C \leftarrow A C+[M]$
- Zero-Address Instructions
- Add
$\mathrm{TOS} \leftarrow \mathrm{TOS}+(\mathrm{TOS}-1)$
- RISC Instructions
- Lots of registers. Memory is restricted to Load \& Store

Basic Instruction Types..

Example: Evaluate (A+B) * (C+D)

- Three-Address

1. Add A, B, R1 $\quad ; \mathrm{R} 1 \leftarrow[\mathrm{~A}]+[\mathrm{B}]$
2. Add C, D, R2
; $\mathrm{R} 2 \leftarrow[\mathrm{C}]+[\mathrm{D}]$
3. Multiply R1, R2, X
; $\mathrm{X} \leftarrow[\mathrm{R} 1]$ * [R2]

Basic Instruction Types..

Example: Evaluate $(\mathrm{A}+\mathrm{B}) *(\mathrm{C}+\mathrm{D})$

- Two-Address

1. Move A, R1
2. Add B, R1
3. Move C, R2
4. Add D, R2
5. Multiply R1, R2
6. Move R2, X
; R1 $\leftarrow[\mathrm{A}]$
; R1 $\leftarrow[R 1]+[B]$
; R2 $\leftarrow[C]$
; R2 $\leftarrow[R 2]+[D]$
; R2 $\leftarrow[R 1] *[R 2]$
; $\mathrm{X} \leftarrow[\mathrm{R} 2]$

Basic Instruction Types..

Example: Evaluate $(\mathrm{A}+\mathrm{B}) *(\mathrm{C}+\mathrm{D})$

- One-Address

1. Load A
$; A C \leftarrow A$
2. Add B
$; A C \leftarrow A C+B$
3. Store T
; $T \leftarrow A C$
4. Load C
; $\mathrm{AC} \leftarrow[\mathrm{C}]$
5. Add D
6. Multiply T
7. Store X
$; A C \leftarrow A C+[D]$
$; A C \leftarrow A C *[T]$
; $\mathrm{X} \leftarrow \mathrm{AC}$

Basic Instruction Types..

Example: Evaluate (A+B) * (C+D)

- Zero-Address

1. Push A
2. Push B
3. Add
4. Push

C
5. Push D
6. Add
7. Multiply
8. Pop

X
; TOS $\leftarrow \mathrm{A}$
; TOS $\leftarrow B$
; TOS $\leftarrow(A+B)$
; TOS $\leftarrow \mathrm{C}$
; TOS $\leftarrow \mathrm{D}$
; TOS $\leftarrow(C+D)$
; TOS $\leftarrow(\mathrm{C}+\mathrm{D}) *(\mathrm{~A}+\mathrm{B})$
; X \leftarrow TOS

Basic Instruction Types..

Example: Evaluate $(\mathrm{A}+\mathrm{B}) *(\mathrm{C}+\mathrm{D})$

RISC

1. Load A, R1 $; R 1 \leftarrow[A]$
2. Load B, R2
; R2 $\leftarrow[B]$
3. Load C, R3
; R3 $\leftarrow[C]$
4. Load D, R4
; R4 $\leftarrow[D]$
5. Add R1, R2
; $\mathrm{R} 2 \leftarrow \mathrm{R} 1+\mathrm{R} 2$
6. Add R3, R4
; R4 $\leftarrow R 3+R 4$
7. Multiply R2, R4
8. Store R4, X
; $\mathrm{R} 4 \leftarrow \mathrm{R} 2 * \mathrm{R} 4$
; $\mathrm{X} \leftarrow \mathrm{R} 4$

Using Registers

- Registers are faster
- Shorter instructions
- The number of registers is smaller, only few bits are needed to specify the register (e.g. 32 registers need 5 bits)
- Potential speedup
- Minimize the frequency with which data is moved back and forth between the memory and processor registers.

Instruction Execution and Straight-Line Sequencing

Figure 2.8. A program for $\mathrm{C} \leftarrow[\mathrm{A}]+[\mathrm{B}]$.

Branching

$i$$i+4$	Move	NUM1,R0
	Add	NUM2,R0
$i+8$	Add	NUM3,R0
$i+4 n-4$	Add	NUM n,RO
$i+4 n$	Move	RO,SUM
SUM		
NUM1		
NUM2		
NUM n		

Figure 2.9. A straight-line program for adding n numbers.

Branching

Branch target

Conditional branch

Figure 2.10. Using a loop to add n numbers.

Condition Codes

- The processor keeps track of information about the results of various operations for use by subsequent conditional branch instructions.
- Accomplished by recording the required information in individual bits, often called condition code flags.
- These flags are usually grouped together in a special processor register called the condition code register or status register.

Condition Codes

- Four commonly used flags are
- N (negative)
- Set to 1 if the result is negative; otherwise, cleared to 0
- Z (zero)
- Set to 1 if the result is 0 ; otherwise, cleared to 0
- V (overflow)
- Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0
- C (carry)
- Set to 1 if a carry-out results from the operation; otherwise, cleared to 0

Conditional Branch Instructions

- Example:
-A: 11110000

Status Bits

