Computer Organization
and Architecture

Carl Hamacher, Zvonko Vranesic, Safwat Zaky,
Computer Organization, 5th Edition,
Tata McGraw Hill, 2002.

Machine Instructions
and Programs - Part 1

Module 1

Numbers, Arithmetic
Operations, and
Characters

Introduction

e Computers are built using logic circuits that
operate on information represented by two-
valued electrical signals

Labelled as O and 1

e We define the amount of information
represented by such a signal as a bit of
iInformation, where bit stands for binary digit.

e The most natural way to represent a number
IN a computer system is by a string of bits,
called a binary number.

Number Representation

e Consider an n-bit vector
B — bn—l "'blbO

Where b; =0orlfor0<i<n-1

e This vector can represent unsigned integer
values V in the range 0 to 2™ — 1, where

V(B) — bn—l X 271—1 + *e + bl X 21 + bO X 20
e We obviously need to represent both positive
and negative numbers.

Signed Integer

o 3 major representations:
Sign-and-magnitude
1’s complement
2's complement

e Assumptions:
4-bit machine word
16 different values can be represented
Roughly half are positive, half are negative

Sign-and-Magnitude Representation

-/ +0
-5 +2 N
-4 0011\ +3 0100 =+ 4
-3 {1011 0100] +4 1 \100 —.2

1000 0111

High order bit is sign: O = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits = +/-2"1 -1

Two representations for O

1’s Complement Representation

-0 +0
-3 +3 /
0011 0100 =+ 4
-4 1011 0100/ +4 1011=-4

1000 0111
-7 +7

e Subtraction implemented by addition & 1's complement

e Still two representations of 0! This causes some problems

e Some complexities in addition

o0
o0
e
2’s Complement Representation :
-1 +0
-3 +2 N
like 1's comp /
except shifted -4 o011\ +3 0100 =+ 4
one position
clockwise -5 {1011 0100/ +4 1100 =-4

1000

0111

e Only one representation for 0

e One more negative number than positive
number

Binary, Signed-Integer
Representations

Page 28 B Values represented
Sign and
byb,b, b, magnitude 1's complement 2's complement
0111 + 7 + 7 + 7
0110 +6 +6 +6
0101 +5 +5 +5
0100 + 4 +4 + 4
0011 +3 +3 +3
0010 +2 +2 ‘2
0001 +1 + 1 + 1
0000 +0 +0 + 0
1000 0 7 g
1001 -1 6 5
1010 -2 5 e
1011 -3 4 &
1100 - 4 _3 _a
1101 -5 2 3
1110 -6 1 5
1111 -7 -0 1

Figure 2.1. Binary, signed-integer representations.

Addition of Positive Numbers

0 I 0 I
+ 0 + 0 + 1 + 1
0 1 1 10

Figure 2.2 Addition of 1-bit numbers.

Addition and Subtraction of | $22:
Sighed Numbers .

1000

(a) Circle representation of integers mod N (b) Mod 16 system for 2's-complement numbers

Figure 2.3 Modular number systems and the
2'scomplement system.

Addition and Subtraction — 2’s | 3::
Complement

e To add two numbers, add their n-bit
representations, ignoring the carry-out signal
from the most significant bit (MSB) position.
The sum will be the algebraically correct
value in the 2’s complement representation
as long as the answer is in the range —2"1

through +2™1 — 1.

Addition and Subtraction — 2’s | 3::
Complement..

e To subtract two numbers X and Y, that is, to
perform X — Y, form the 2’s complement of Y
and then add it to X. Again, the result will be
the algebraically correct value in the 2’s
complement representation system Iif the
answer is in the range —2"~1 through
+ 21 -1,

(Y X
e0o
L X
O
Examples
4 0100 -4 1100
+3 0011 + (-3 1101
If carry-in to the high
order bit = 7 0111 7 11001
carry-out then ignore
carry
if carry-in differs from 4 0100 4 1100
carry-out then overflow
-3 1101 +3 0011

1 HOOOl -1 1111

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems

Exampl

Page 31

(c)

(e)

(f)

(8)

(h)

()

€S

0010 E+2
+ 0011 +3
0101 (+5)
1011 (- 5)
+ 1110 (- 2)
1001 -7
1101 (- 3)
- 1001 (-7)
0010 §+2
- 0100 +4
0110 E+6
- 0011 +3
1001 (-7)
- 1011 (- 5
1001 -7)
- 0001 (+1)
0010 (+2)
- 1101 (-3)

(b)

(d)

0100 (+4)
1010 (- 6)
1110 (- 2)
0111 (+7)
1101 (-3)
0100 (+4)
1101
0111
0100 (+4)
0010
1100
1110 (-2)
0110
1101
0011 (+3)
1001
0101
1110 (-2)
1001
1111
1000 (-8)
0010
0011
0101 (+5)

Figure 2.4. 2's-complement Add and Subtract operations.

Overflow - Add two positive numbers to geta | ooe
negative number or two negative numbers to
get a positive number

. X
Overflow Conditions <
0111
0 0101 7 1001
-8 1000 7 10111
Overflow Overflow
0000
0 0101 -3 1101
2 _0010 5 1011
7 0111)
8 11000

No overflow

No overflow

Overflow when carry-in to the high-order bit does not equal carry out

Characters

¢ |n addition to numbers, computers must be
able to handle nonnumeric text information

consisting of characters.

e Characters can be letters of the alphabet,
decimal digits, punctuation marks, and so on.

e They are represented by codes that are
usually eight bits long.

American Standards Committee on Information
Interchange (ASCII) code is widely used.

ASCII Table

Char Dec Oct Hex | Char Dec Oct Hex | Char Dec Oct Hex
(sp) 32 0040 0x20 | @ 64 0100 Ox40 | ° 96 0140 0x60
! 33 0041 0x21 | A 65 0101 0x41 | a a7 0141 Ox61
" 34 0042 (0x22 | B 66 0102 0Oxd2 | b 98 0142 (Ox62
35 0043 0x23 | C 67 0103 0x43 | ¢ 99 0143 0Ox63
5 36 0044 0x24 | D 6a 0104 Ox44 | d 100 0144 Ox64
i a7 0045 0x25 | E 69 0105 0x45 | e 101 0145 0x65
& 38 0046 0x26 | F 70 0106 Oxd6 | f 102 0146 0x66
' 39 0047 0x27 | G 71 0107 0x47 | g 103 0147 OxG67
(40 0050 0x26 | H 72 0110 0x48 | h 104 0150 0x6a
) 41 0051 0x29 | 1 73 0111 0x49 | | 105 0151 0x69
* 42 0052 Ox2a | J 74 0112 Oxda | | 106 0152 Oxba
+ 43 0053 0x2h | K 75 0113 Oxdb | k 107 0153 Ox6h

44 0054 Ox2c | L 76 0114 Oxde | | 108 0154 Ox6e

45 0055 Ox2d | M 77 0115 Oxdd | m 109 0155 Ox6d
. 46 0056 Ox2e | N 78 0116 Oxde | n 110 0156 OxGe
/ 47 0057 ox2f | O 79 0117 Ox4f | o 111 0157 Ox6f
0 48 0060 O0x30 | P 80 0120 Ox60 | p 112 0160 0x70
1 49 0061 0x31 | Q 81 0121 051 | q 113 0161 0x71
2 50 0062 0x32 | R 82 0122 0x52 | r 114 0162 Ox72
3 51 0063 0x33 | S 83 0123 0x53 | s 115 0163 0x73
4 52 0064 0x34 | T 64 0124 Ox54 | t 116 0164 Ox74
5 53 0065 0x35 | U 85 0125 0xB5 | u 117 0165 Ox75
B 54 0066 0x36 | V 86 0126 Ox66 | v 118 0166 Ox76
7 55 0067 0x37 | W 87 0127 Ox67 | w 119 0167 0x77
8 56 0070 0x38 | X 88 0130 OxB8 | «x 120 0170 Ox78
9 57 0071 O0x39 | Y 89 0131 OxB9 | y 121 0171 0x79
: ba 0072 0x3a | Z 80 0132 Oxba | z 122 0172 Ox7a
; 59 0073 0x3b | [g1 0133 Ox5b | 123 0173 0x7b
< 60 0074 0x3c | 82 0134 0x5¢c | | 124 0174 Ox7c
= 61 0075 0x3d |] 83 0135 Oxad | } 125 0175 Ox7d
> 62 0076 Ox3e | 94 0136 Ox5e | -~ 126 0176 Ox7e
? 63 0077 Ox3f | 95 0137 Ox5f

Memory Locations,
and Addresses

Memory Locations and

Addresses

e Memory consists
of many millions of
storage cells,
each of which can
store 1 Dbit.

e Data is usually
accessed in n-bit
groups called
words.

n is called word
length.

n bits >

_,

Figure 2.5. Memory words.

first word

second word

i th word

last word

Memory Locations and
Addresses..

e 32-bit word length example

|- 32 bits -|

b31 b30 *e bl bO

L Sign bit: b3;= 0 for positive numbers
b3,= 1 for negative numbers

(a) A signed integer

8 bits 8 bits 8 bits 8 bits
ASCII ASCII ASCII ASCII
character character character character

(b) Four characters

Figure 2.6 Exomples of encoded information in a 32-bit word.

Memory Locations and 1
Addresses..

e To retrieve information from memory, either for one
word or one byte (8-bit), addresses for each location
are needed.

e A k-bit address memory has 2k memory locations,
namely 0 — 2k-1, called memory space.

e 24-bit memory: 224 = 16,777,216 = 16M (1M=229)
e 32-bit memory: 232 = 4G (1G=230)

e 1K(kilo)=210

o 1T(tera)=240

Byte Addressability

e A byte Is always 8 bits, but the word length typically
ranges from 16 to 64 bits.

e Itis impractical to assign distinct addresses to
iIndividual bit locations in the memory.

e The most practical assignment is to have successive
addresses refer to successive byte locations in the
memory — byte-addressable memory.

e Byte locations have addresses O, 1, 2, ... If word
length is 32 bits, they successive words are located
at addresses 0, 4, 8,...

Big-Endian and Little-Endian
Assignments

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant
bytes of the word

Word
address Byte address Byte address
0 0 1 2 3 0 3 2 1 0
4 4 5 6 7 4 7 6 5 4
° °
° °
° °
k k k k k k k k k k
2 -4 2-42-32-22-1 2 -4 2-112-2 2-32-4
(a) Big-endian assignment (b) Little-endian assignment

Figure 2.7. Byte and word addressing.

Word Alignment

e Address ordering of bytes

e Word alignment

Words are said to be aligned in memory if they
begin at a byte address. that is a multiple of the
num of bytes in a word.

16-bit word: word addresses: 0, 2, 4,....
32-bit word: word addresses: 0, 4, 8,....
64-bit word: word addresses: 0, 8,16,....

Accessing numbers, characters, s
and character strings

e A number usually occupies one word.

It can be accessed in the memory by specifying its
word address.
e Similarly, individual characters can be accessed
by their byte address.

e It is necessary to handle character strings of
variable length.
The beginning of the string is indicated by giving the
address of the byte containing its first character.

Successive byte locations contain successive
characters of the string.

Accessing numbers, characters, s
and character strings..

e There are two ways to indicate the length
of the string.

A special control character with the meaning
"end of string" can be used as the last
character in the string.

Or a separate memory word location or
processor register can contain a number
Indicating the length of the string in bytes.

Memory Operations

e Load (or Read or Fetch)

Copy the content. The memory content doesn’t
change.

Address — Load
Registers can be used

e Store (or Write)

Overwrite the content in memory
Address and Data — Store
Registers can be used

Floating-Point Numbers and | 3¢
Operations

e In the 2's complement system, the signed value
F, represented by the n-bit binary fraction
B =by.b_1b_3 ...b_(n-1
IS given by
F(B) = —byx 2% b_y X271+ b_y X272+ -4 b_(p_qy x 27071

where therange of Fis -1 < F <1 —2-(n"1

e For 32-bit format, the range is approximately 0 to
+ 2.15 x 10° for integers and +4.55 x 1071% to
+ 1 for fractions.

IEEE Standard for Floating- 13
Point Numbers

e A binary floating-point number can be
represented by
A sign for the number
Some significant bits

A signed scale factor exponent for an implied
base of 2

e The basic IEEE format is a 32-bit representation,
shown in Figure 6.24a

Based on 2008 version of IEEE (Institute of Electrical and
Electronics Engineers) Standard 754, labelled 754-2008

- 32 bits

s E ? M
Sign of ‘ ¥ B t
nugmber: z;llj)l(tn?;%'t‘cl: manligg;l;:'taction

0 signifies +

. excess-127
1 signifies — g
representation
E’-127
Value represented = £1.M x 2
(a) Single precision
0/00101000e001010 ...
-87

Value represented = 1.001010...0x2

(b) Example of a single-precision number

- 64 bits
Is E s M
Sign —T) v A v
11-bit excess-1023 52-bit
exponent mantissa fraction

~10
Value represented = £1.M X 2E 1023

(c) Double precision

Figure 6.24 IEEE standard floating-point formats.

IEEE Standard for Floating- 13
Point Numbers..

e The leftmost bit represents the sign, S, for the
number.

e The next 8 bits, E’, represent the sighed
exponent of the scale factor (with an implied
base of 2)

e The remaining 23 bits, M, are the fractional
part of the significant bits.

IEEE Standard for Floating- 13
Point Numbers..

e The full 24-bit string, B, of significant bits,
called the mantissa, always has a leading 1,
with the binary point immediately to its right.

e Therefore, the mantissa
B=1.M=1.b_{b_, ...b_9y3
has the value
V(B) =1+ b_ X2 1+ b_, X224+ h_,u x 2723

e By convention, when the binary point is
placed to the right of the first significant bit,
the number is said to be normalized.

IEEE Standard for Floating- 13
Point Numbers..

e Instead of the actual signed exponent, E,
the value stored in the exponent field is an
unsigned integer E' = E + 127.

This Is called the excess-127 format.
E'isintherange 0 < E' < 255.

e The use of the excess-127 representation
for exponents simplifies comparison of the
relative sizes of two floating-point
numbers.

IEEE Standard for Floating- 13
Point Numbers..

e 32-bit representation — single-precision
8-bit excess-127 exponent E' withrange 1 < E' <
254 for normal values
0 and 255 indicate special values

The actual exponent, E’, is in the range —126 < E' <
127 providing scale factors of 2714¢ to 2147
(approximately 10%38).

The 54-bit mantissa provides a precision equivalent to
about 7 decimal digits

IEEE Standard for Floating- 13
Point Numbers..

e 64-bit representation — double-precision

11-bit excess-1023 exponent E’ with range 1 <
E' < 2046 for normal values

0 and 2047 indicate special values

The actual exponent, E’, is in the range —1022 <
E < 1023, providing scale factors of 271922 to
21023 (@approximately 10%308),

The 53-bit mantissa provides a precision
equivalent to about 16 decimal digits

IEEE Standard for Floating-
Point Numbers..

excess-127 exponent
A

L ~

IO 1000100000101 10...

(There is no implicit 1 to the left of the binary point.)

Value represented = +0.0010110... x 2’

(a) Unnormalized value

0/10000101¢0110...

Value represented = +1.0110. .. x 2°

(b) Normalized version

Figure .25 Floaling-point normalization in IEEE single-precision format.

IEEE Standard for Floating- 13
Point Numbers..

e Two basic aspects of operating with floating-
point numbers

e First, if a number is not normalized, it can be
put in normalized form by shifting the binary
point and adjusting the exponent.

Underflow
e Second, as computations proceed, a number

that does not fall in the representable range
of normal numbers might be generated.

Overflow

Special Values

e The end values 0 and 255 of the excess-127
exponent E’ are used to represent special
values.

When E' = 0 and M = 0, the value 0 is represented.

When E' = 255 and M = 0, the value « is
represented.

When E' = 0 and M # 0, denormal numbers are
represented.

When E' = 255 and M # 0, the value represented is
called Not a Number (NaN).

Instructions and
Instruction
Sequencing

“Must-Perform” Operations

e A computer must have instructions capable of
performing four types of operations:

Data transfers between the memory and the
processor registers

Arithmetic and logic operations on data
Program sequencing and control
/O transfers

Register Transfer Notation

e Identify a location by a symbolic name standing
for its hardware binary address

Names for addresses of memory location may be
LOC, PLACE, A, VAR2

Processor register names may be RO, R5
/O register names may be DATAIN, OUTSTATUS

e Contents of a location are denoted by placing
sguare brackets around the name of the location
R1—[LOC]
R3 —[R1]+[R2]

Assembly Language Notation

e Represent machine instructions and
programs.

e Move LOC, R1 = R1«[LOC]
e Add R1, R2, R3 = R3 «[R1]+[R2]

CPU Organization

e Single Accumulator
Result usually goes to the Accumulator

Accumulator has to be saved to memory quite
often

e General Register

Registers hold operands thus reduce memory
traffic

Register bookkeeping

e Stack
Operands and result are always in the stack

Basic Instruction Types

e Three-Address Instructions

Add R1, R2, R3 R3 — R1+R2
e Two-Address Instructions
Add R1, R2 R2 — R1+R2
e One-Address Instructions
Add M AC — AC + [M]
e Zero-Address Instructions
Add TOS « TOS + (TOS - 1)

e RISC Instructions
Lots of registers. Memory is restricted to Load & Store

GRS 7L et ey 77
Opcode| Operand(s) or Address(es)

Basic Instruction Types..

Example: Evaluate (A+B) * (C+D)

e Three-Address
Add A, B, R1
Add C, D, R2
Multiply R1, R2, X

' R1 «— [A]
' R2 « [C]

; X «— [R1]

+[B]
+[D]
* [R2]

Basic Instruction Types..
Example: Evaluate (A+B) * (C+D)

e [wo-Address

Move
Add
Move
Add
Multiply
Move

A R1
B, R1
C, R2
D, R2
R1, R2
R2, X

, R1T « [A]

; R1 «— [R1] + [B]
' R2 « [C]

' R2 — [R2] + [D]
' R2 — [R1] * [R2]
: X «— [R2]

Basic Instruction Types..

Example: Evaluate (A+B) * (C+D)
e One-Address

Load
Add
Store
Load
Add
Multiply
Store

A

B
T
C
D
T
X

:AC — A
,AC—AC +B
;T<—AC
;AC<—[C]

- AC « AC + [D]
; AC «— AC * [T]
;X<—AC

Basic Instruction Types..
Example: Evaluate (A+B) * (C+D)
e Zero-Address

Push
Push
Add
Push
Push
Add
Multiply
Pop

A
B

C
D

X

:TOS «— A

' TOS «— B

; TOS «— (A+B)

: TOS « C

' TOS « D

; TOS « (C + D)

; TOS «— (C+D)*(A+B)
: X «— TOS

Basic Instruction Types..
Example: Evaluate (A+B) * (C+D)

e RISC
_oac A, R1 ; R1T «— [A]
_oac B, R2 , R2 — [B]
_oao C, R3 , R3 — [C]
_oac D, R4 , R4 — [D
Add R1, R2 , R2 — R1+R2
Add R3, R4 , R4 — R3 + R4
Multiply R2, R4 ;R4 — R2 * R4

Store R4, X - X «— R4

Using Registers

e Registers are faster

e Shorter instructions

The number of registers is smaller, only few bits
are needed to specify the register (e.g. 32
registers need 5 bits)

e Potential speedup

e Minimize the frequency with which data is
moved back and forth between the memory
and processor registers.

Instruction Execution and
Straight-Line Sequencing "

Address Contents
Begin execution here = —u i Move A,RO
i+4 Add B,RO
i+8 Move RO,C
A

Figure 2.8. A program for C < [A] + [B].

3-instruction
program
segment

Data for
the program

Assumptions:
- One memory operand
per instruction
- 32-bit word length
- Memory is byte
addressable
- Full memory address
can be directly specified
In a single-word instruction

Two-phase procedure
-Instruction fetch
-Instruction execute

Page 43

Branching

i+ 4

i+ 8

i+ 4n- 4

i+ 4n

SUM
NUM1

NUM2

NUM n

Figure 2.9. A straight-line program for adding n numbers.

Move
Add
Add

Add

Move

NUM1,R0
NUM2,R0
NUM3,R0

NUMn,RO

RO,SUM

Branching

Program
loop

Branch target

Conditional branch

Figure 2.10. Using a loop to add n numbers.

LOOP

SUM

NUM1

NUM2

NUM n

Move N,R1
Clear RO
Determine address of
"Next" number and add
"Next" number to RO
Decrement R1
Branch>0 LOOP

Move RO,SUM

Condition Codes

e The processor keeps track of information
about the results of various operations for
use by subsequent conditional branch
Instructions.

Accomplished by recording the required
Information in individual bits, often called condition
code flags.
e These flags are usually grouped together in a
special processor register called the condition
code register or status register.

Condition Codes

e Four commonly used flags are
e N (negative)

Set to 1 if the result is negative; otherwise, cleared to O
e Z (zero)

Set to 1 if the result is 0; otherwise, cleared to O

e V (overflow)
Set to 1 if arithmetic overflow occurs; otherwise, cleared to O

e C (carry)

Set to 1 if a carry-out results from the operation; otherwise,
cleared to O

Conditional Branch
Instructions

e Example: : 11110000
e /11110000 +(-B): 11101100
e 5: 00010100 11011100

R
= Z=0
N=1
V=0

Status BIts

‘V‘Z‘N‘CH

]
\

